LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages
dorgqr.f
Go to the documentation of this file.
1*> \brief \b DORGQR
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download DORGQR + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorgqr.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorgqr.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorgqr.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE DORGQR( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
20*
21* .. Scalar Arguments ..
22* INTEGER INFO, K, LDA, LWORK, M, N
23* ..
24* .. Array Arguments ..
25* DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
26* ..
27*
28*
29*> \par Purpose:
30* =============
31*>
32*> \verbatim
33*>
34*> DORGQR generates an M-by-N real matrix Q with orthonormal columns,
35*> which is defined as the first N columns of a product of K elementary
36*> reflectors of order M
37*>
38*> Q = H(1) H(2) . . . H(k)
39*>
40*> as returned by DGEQRF.
41*> \endverbatim
42*
43* Arguments:
44* ==========
45*
46*> \param[in] M
47*> \verbatim
48*> M is INTEGER
49*> The number of rows of the matrix Q. M >= 0.
50*> \endverbatim
51*>
52*> \param[in] N
53*> \verbatim
54*> N is INTEGER
55*> The number of columns of the matrix Q. M >= N >= 0.
56*> \endverbatim
57*>
58*> \param[in] K
59*> \verbatim
60*> K is INTEGER
61*> The number of elementary reflectors whose product defines the
62*> matrix Q. N >= K >= 0.
63*> \endverbatim
64*>
65*> \param[in,out] A
66*> \verbatim
67*> A is DOUBLE PRECISION array, dimension (LDA,N)
68*> On entry, the i-th column must contain the vector which
69*> defines the elementary reflector H(i), for i = 1,2,...,k, as
70*> returned by DGEQRF in the first k columns of its array
71*> argument A.
72*> On exit, the M-by-N matrix Q.
73*> \endverbatim
74*>
75*> \param[in] LDA
76*> \verbatim
77*> LDA is INTEGER
78*> The first dimension of the array A. LDA >= max(1,M).
79*> \endverbatim
80*>
81*> \param[in] TAU
82*> \verbatim
83*> TAU is DOUBLE PRECISION array, dimension (K)
84*> TAU(i) must contain the scalar factor of the elementary
85*> reflector H(i), as returned by DGEQRF.
86*> \endverbatim
87*>
88*> \param[out] WORK
89*> \verbatim
90*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
91*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
92*> \endverbatim
93*>
94*> \param[in] LWORK
95*> \verbatim
96*> LWORK is INTEGER
97*> The dimension of the array WORK. LWORK >= max(1,N).
98*> For optimum performance LWORK >= N*NB, where NB is the
99*> optimal blocksize.
100*>
101*> If LWORK = -1, then a workspace query is assumed; the routine
102*> only calculates the optimal size of the WORK array, returns
103*> this value as the first entry of the WORK array, and no error
104*> message related to LWORK is issued by XERBLA.
105*> \endverbatim
106*>
107*> \param[out] INFO
108*> \verbatim
109*> INFO is INTEGER
110*> = 0: successful exit
111*> < 0: if INFO = -i, the i-th argument has an illegal value
112*> \endverbatim
113*
114* Authors:
115* ========
116*
117*> \author Univ. of Tennessee
118*> \author Univ. of California Berkeley
119*> \author Univ. of Colorado Denver
120*> \author NAG Ltd.
121*
122*> \ingroup ungqr
123*
124* =====================================================================
125 SUBROUTINE dorgqr( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
126*
127* -- LAPACK computational routine --
128* -- LAPACK is a software package provided by Univ. of Tennessee, --
129* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
130*
131* .. Scalar Arguments ..
132 INTEGER INFO, K, LDA, LWORK, M, N
133* ..
134* .. Array Arguments ..
135 DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
136* ..
137*
138* =====================================================================
139*
140* .. Parameters ..
141 DOUBLE PRECISION ZERO
142 parameter( zero = 0.0d+0 )
143* ..
144* .. Local Scalars ..
145 LOGICAL LQUERY
146 INTEGER I, IB, IINFO, IWS, J, KI, KK, L, LDWORK,
147 $ LWKOPT, NB, NBMIN, NX
148* ..
149* .. External Subroutines ..
150 EXTERNAL dlarfb, dlarft, dorg2r, xerbla
151* ..
152* .. Intrinsic Functions ..
153 INTRINSIC max, min
154* ..
155* .. External Functions ..
156 INTEGER ILAENV
157 EXTERNAL ilaenv
158* ..
159* .. Executable Statements ..
160*
161* Test the input arguments
162*
163 info = 0
164 nb = ilaenv( 1, 'DORGQR', ' ', m, n, k, -1 )
165 lwkopt = max( 1, n )*nb
166 work( 1 ) = lwkopt
167 lquery = ( lwork.EQ.-1 )
168 IF( m.LT.0 ) THEN
169 info = -1
170 ELSE IF( n.LT.0 .OR. n.GT.m ) THEN
171 info = -2
172 ELSE IF( k.LT.0 .OR. k.GT.n ) THEN
173 info = -3
174 ELSE IF( lda.LT.max( 1, m ) ) THEN
175 info = -5
176 ELSE IF( lwork.LT.max( 1, n ) .AND. .NOT.lquery ) THEN
177 info = -8
178 END IF
179 IF( info.NE.0 ) THEN
180 CALL xerbla( 'DORGQR', -info )
181 RETURN
182 ELSE IF( lquery ) THEN
183 RETURN
184 END IF
185*
186* Quick return if possible
187*
188 IF( n.LE.0 ) THEN
189 work( 1 ) = 1
190 RETURN
191 END IF
192*
193 nbmin = 2
194 nx = 0
195 iws = n
196 IF( nb.GT.1 .AND. nb.LT.k ) THEN
197*
198* Determine when to cross over from blocked to unblocked code.
199*
200 nx = max( 0, ilaenv( 3, 'DORGQR', ' ', m, n, k, -1 ) )
201 IF( nx.LT.k ) THEN
202*
203* Determine if workspace is large enough for blocked code.
204*
205 ldwork = n
206 iws = ldwork*nb
207 IF( lwork.LT.iws ) THEN
208*
209* Not enough workspace to use optimal NB: reduce NB and
210* determine the minimum value of NB.
211*
212 nb = lwork / ldwork
213 nbmin = max( 2, ilaenv( 2, 'DORGQR', ' ', m, n, k,
214 $ -1 ) )
215 END IF
216 END IF
217 END IF
218*
219 IF( nb.GE.nbmin .AND. nb.LT.k .AND. nx.LT.k ) THEN
220*
221* Use blocked code after the last block.
222* The first kk columns are handled by the block method.
223*
224 ki = ( ( k-nx-1 ) / nb )*nb
225 kk = min( k, ki+nb )
226*
227* Set A(1:kk,kk+1:n) to zero.
228*
229 DO 20 j = kk + 1, n
230 DO 10 i = 1, kk
231 a( i, j ) = zero
232 10 CONTINUE
233 20 CONTINUE
234 ELSE
235 kk = 0
236 END IF
237*
238* Use unblocked code for the last or only block.
239*
240 IF( kk.LT.n )
241 $ CALL dorg2r( m-kk, n-kk, k-kk, a( kk+1, kk+1 ), lda,
242 $ tau( kk+1 ), work, iinfo )
243*
244 IF( kk.GT.0 ) THEN
245*
246* Use blocked code
247*
248 DO 50 i = ki + 1, 1, -nb
249 ib = min( nb, k-i+1 )
250 IF( i+ib.LE.n ) THEN
251*
252* Form the triangular factor of the block reflector
253* H = H(i) H(i+1) . . . H(i+ib-1)
254*
255 CALL dlarft( 'Forward', 'Columnwise', m-i+1, ib,
256 $ a( i, i ), lda, tau( i ), work, ldwork )
257*
258* Apply H to A(i:m,i+ib:n) from the left
259*
260 CALL dlarfb( 'Left', 'No transpose', 'Forward',
261 $ 'Columnwise', m-i+1, n-i-ib+1, ib,
262 $ a( i, i ), lda, work, ldwork, a( i, i+ib ),
263 $ lda, work( ib+1 ), ldwork )
264 END IF
265*
266* Apply H to rows i:m of current block
267*
268 CALL dorg2r( m-i+1, ib, ib, a( i, i ), lda, tau( i ),
269 $ work,
270 $ iinfo )
271*
272* Set rows 1:i-1 of current block to zero
273*
274 DO 40 j = i, i + ib - 1
275 DO 30 l = 1, i - 1
276 a( l, j ) = zero
277 30 CONTINUE
278 40 CONTINUE
279 50 CONTINUE
280 END IF
281*
282 work( 1 ) = iws
283 RETURN
284*
285* End of DORGQR
286*
287 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dlarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork)
DLARFB applies a block reflector or its transpose to a general rectangular matrix.
Definition dlarfb.f:195
recursive subroutine dlarft(direct, storev, n, k, v, ldv, tau, t, ldt)
DLARFT forms the triangular factor T of a block reflector H = I - vtvH
Definition dlarft.f:162
subroutine dorg2r(m, n, k, a, lda, tau, work, info)
DORG2R generates all or part of the orthogonal matrix Q from a QR factorization determined by sgeqrf ...
Definition dorg2r.f:112
subroutine dorgqr(m, n, k, a, lda, tau, work, lwork, info)
DORGQR
Definition dorgqr.f:126