SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
pssyntrd.f
Go to the documentation of this file.
1 SUBROUTINE pssyntrd( UPLO, N, A, IA, JA, DESCA, D, E, TAU, WORK,
2 $ LWORK, INFO )
3*
4* -- ScaLAPACK routine (version 1.7) --
5* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
6* and University of California, Berkeley.
7* May 25, 2001
8*
9* .. Scalar Arguments ..
10 CHARACTER UPLO
11 INTEGER IA, INFO, JA, LWORK, N
12* ..
13* .. Array Arguments ..
14 INTEGER DESCA( * )
15 REAL A( * ), D( * ), E( * ), TAU( * ), WORK( * )
16* ..
17* Bugs
18* ====
19*
20*
21* Support for UPLO='U' is limited to calling the old, slow, PSSYTRD
22* code.
23*
24*
25* Purpose
26* =======
27*
28* PSSYNTRD is a prototype version of PSSYTRD which uses tailored
29* codes (either the serial, SSYTRD, or the parallel code, PSSYTTRD)
30* when the workspace provided by the user is adequate.
31*
32*
33* PSSYNTRD reduces a real symmetric matrix sub( A ) to symmetric
34* tridiagonal form T by an orthogonal similarity transformation:
35* Q' * sub( A ) * Q = T, where sub( A ) = A(IA:IA+N-1,JA:JA+N-1).
36*
37* Features
38* ========
39*
40* PSSYNTRD is faster than PSSYTRD on almost all matrices,
41* particularly small ones (i.e. N < 500 * sqrt(P) ), provided that
42* enough workspace is available to use the tailored codes.
43*
44* The tailored codes provide performance that is essentially
45* independent of the input data layout.
46*
47* The tailored codes place no restrictions on IA, JA, MB or NB.
48* At present, IA, JA, MB and NB are restricted to those values allowed
49* by PSSYTRD to keep the interface simple. These restrictions are
50* documented below. (Search for "restrictions".)
51*
52* Notes
53* =====
54*
55*
56* Each global data object is described by an associated description
57* vector. This vector stores the information required to establish
58* the mapping between an object element and its corresponding process
59* and memory location.
60*
61* Let A be a generic term for any 2D block cyclicly distributed array.
62* Such a global array has an associated description vector DESCA.
63* In the following comments, the character _ should be read as
64* "of the global array".
65*
66* NOTATION STORED IN EXPLANATION
67* --------------- -------------- --------------------------------------
68* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
69* DTYPE_A = 1.
70* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
71* the BLACS process grid A is distribu-
72* ted over. The context itself is glo-
73* bal, but the handle (the integer
74* value) may vary.
75* M_A (global) DESCA( M_ ) The number of rows in the global
76* array A.
77* N_A (global) DESCA( N_ ) The number of columns in the global
78* array A.
79* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
80* the rows of the array.
81* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
82* the columns of the array.
83* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
84* row of the array A is distributed.
85* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
86* first column of the array A is
87* distributed.
88* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
89* array. LLD_A >= MAX(1,LOCr(M_A)).
90*
91* Let K be the number of rows or columns of a distributed matrix,
92* and assume that its process grid has dimension p x q.
93* LOCr( K ) denotes the number of elements of K that a process
94* would receive if K were distributed over the p processes of its
95* process column.
96* Similarly, LOCc( K ) denotes the number of elements of K that a
97* process would receive if K were distributed over the q processes of
98* its process row.
99* The values of LOCr() and LOCc() may be determined via a call to the
100* ScaLAPACK tool function, NUMROC:
101* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
102* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
103* An upper bound for these quantities may be computed by:
104* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
105* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
106*
107*
108* Arguments
109* =========
110*
111* UPLO (global input) CHARACTER
112* Specifies whether the upper or lower triangular part of the
113* symmetric matrix sub( A ) is stored:
114* = 'U': Upper triangular
115* = 'L': Lower triangular
116*
117* N (global input) INTEGER
118* The number of rows and columns to be operated on, i.e. the
119* order of the distributed submatrix sub( A ). N >= 0.
120*
121* A (local input/local output) REAL pointer into the
122* local memory to an array of dimension (LLD_A,LOCc(JA+N-1)).
123* On entry, this array contains the local pieces of the
124* symmetric distributed matrix sub( A ). If UPLO = 'U', the
125* leading N-by-N upper triangular part of sub( A ) contains
126* the upper triangular part of the matrix, and its strictly
127* lower triangular part is not referenced. If UPLO = 'L', the
128* leading N-by-N lower triangular part of sub( A ) contains the
129* lower triangular part of the matrix, and its strictly upper
130* triangular part is not referenced. On exit, if UPLO = 'U',
131* the diagonal and first superdiagonal of sub( A ) are over-
132* written by the corresponding elements of the tridiagonal
133* matrix T, and the elements above the first superdiagonal,
134* with the array TAU, represent the orthogonal matrix Q as a
135* product of elementary reflectors; if UPLO = 'L', the diagonal
136* and first subdiagonal of sub( A ) are overwritten by the
137* corresponding elements of the tridiagonal matrix T, and the
138* elements below the first subdiagonal, with the array TAU,
139* represent the orthogonal matrix Q as a product of elementary
140* reflectors. See Further Details.
141*
142* IA (global input) INTEGER
143* The row index in the global array A indicating the first
144* row of sub( A ).
145*
146* JA (global input) INTEGER
147* The column index in the global array A indicating the
148* first column of sub( A ).
149*
150* DESCA (global and local input) INTEGER array of dimension DLEN_.
151* The array descriptor for the distributed matrix A.
152*
153* D (local output) REAL array, dimension LOCc(JA+N-1)
154* The diagonal elements of the tridiagonal matrix T:
155* D(i) = A(i,i). D is tied to the distributed matrix A.
156*
157* E (local output) REAL array, dimension LOCc(JA+N-1)
158* if UPLO = 'U', LOCc(JA+N-2) otherwise. The off-diagonal
159* elements of the tridiagonal matrix T: E(i) = A(i,i+1) if
160* UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. E is tied to the
161* distributed matrix A.
162*
163* TAU (local output) REAL, array, dimension
164* LOCc(JA+N-1). This array contains the scalar factors TAU of
165* the elementary reflectors. TAU is tied to the distributed
166* matrix A.
167*
168* WORK (local workspace/local output) REAL array,
169* dimension (LWORK)
170* On exit, WORK( 1 ) returns the optimal LWORK.
171*
172* LWORK (local or global input) INTEGER
173* The dimension of the array WORK.
174* LWORK is local input and must be at least
175* LWORK >= MAX( NB * ( NP +1 ), 3 * NB )
176*
177* For optimal performance, greater workspace is needed, i.e.
178* LWORK >= 2*( ANB+1 )*( 4*NPS+2 ) + ( NPS + 4 ) * NPS
179* ICTXT = DESCA( CTXT_ )
180* ANB = PJLAENV( ICTXT, 3, 'PSSYTTRD', 'L', 0, 0, 0, 0 )
181* SQNPC = INT( SQRT( REAL( NPROW * NPCOL ) ) )
182* NPS = MAX( NUMROC( N, 1, 0, 0, SQNPC ), 2*ANB )
183*
184* NUMROC is a ScaLAPACK tool functions;
185* PJLAENV is a ScaLAPACK envionmental inquiry function
186* MYROW, MYCOL, NPROW and NPCOL can be determined by calling
187* the subroutine BLACS_GRIDINFO.
188*
189*
190* INFO (global output) INTEGER
191* = 0: successful exit
192* < 0: If the i-th argument is an array and the j-entry had
193* an illegal value, then INFO = -(i*100+j), if the i-th
194* argument is a scalar and had an illegal value, then
195* INFO = -i.
196*
197* Further Details
198* ===============
199*
200* If UPLO = 'U', the matrix Q is represented as a product of elementary
201* reflectors
202*
203* Q = H(n-1) . . . H(2) H(1).
204*
205* Each H(i) has the form
206*
207* H(i) = I - tau * v * v'
208*
209* where tau is a real scalar, and v is a real vector with
210* v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
211* A(ia:ia+i-2,ja+i), and tau in TAU(ja+i-1).
212*
213* If UPLO = 'L', the matrix Q is represented as a product of elementary
214* reflectors
215*
216* Q = H(1) H(2) . . . H(n-1).
217*
218* Each H(i) has the form
219*
220* H(i) = I - tau * v * v'
221*
222* where tau is a real scalar, and v is a real vector with
223* v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in
224* A(ia+i+1:ia+n-1,ja+i-1), and tau in TAU(ja+i-1).
225*
226* The contents of sub( A ) on exit are illustrated by the following
227* examples with n = 5:
228*
229* if UPLO = 'U': if UPLO = 'L':
230*
231* ( d e v2 v3 v4 ) ( d )
232* ( d e v3 v4 ) ( e d )
233* ( d e v4 ) ( v1 e d )
234* ( d e ) ( v1 v2 e d )
235* ( d ) ( v1 v2 v3 e d )
236*
237* where d and e denote diagonal and off-diagonal elements of T, and vi
238* denotes an element of the vector defining H(i).
239*
240* Alignment requirements
241* ======================
242*
243* The distributed submatrix sub( A ) must verify some alignment proper-
244* ties, namely the following expression should be true:
245* ( MB_A.EQ.NB_A .AND. IROFFA.EQ.ICOFFA .AND. IROFFA.EQ.0 ) with
246* IROFFA = MOD( IA-1, MB_A ) and ICOFFA = MOD( JA-1, NB_A ).
247*
248* =====================================================================
249*
250* .. Parameters ..
251 INTEGER BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
252 $ mb_, nb_, rsrc_, csrc_, lld_
253 parameter( block_cyclic_2d = 1, dlen_ = 9, dtype_ = 1,
254 $ ctxt_ = 2, m_ = 3, n_ = 4, mb_ = 5, nb_ = 6,
255 $ rsrc_ = 7, csrc_ = 8, lld_ = 9 )
256 REAL ONE
257 parameter( one = 1.0e+0 )
258* ..
259* .. Local Scalars ..
260 LOGICAL LQUERY, UPPER
261 CHARACTER COLCTOP, ROWCTOP
262 INTEGER ANB, CTXTB, I, IACOL, IAROW, ICOFFA, ICTXT,
263 $ iinfo, indb, indd, inde, indtau, indw, ipw,
264 $ iroffa, j, jb, jx, k, kk, llwork, lwmin, minsz,
265 $ mycol, mycolb, myrow, myrowb, nb, np, npcol,
266 $ npcolb, nprow, nprowb, nps, nq, onepmin, sqnpc,
267 $ ttlwmin
268* ..
269* .. Local Arrays ..
270 INTEGER DESCB( DLEN_ ), DESCW( DLEN_ ), IDUM1( 2 ),
271 $ idum2( 2 )
272* ..
273* .. External Subroutines ..
274 EXTERNAL blacs_get, blacs_gridexit, blacs_gridinfo,
275 $ blacs_gridinit, chk1mat, descset, igamn2d,
276 $ pchk1mat, pselset, pslamr1d, pslatrd, pssyr2k,
277 $ pssytd2, pssyttrd, pstrmr2d, pb_topget,
278 $ pb_topset, pxerbla, ssytrd
279* ..
280* .. External Functions ..
281 LOGICAL LSAME
282 INTEGER INDXG2L, INDXG2P, NUMROC, PJLAENV
283 EXTERNAL lsame, indxg2l, indxg2p, numroc, pjlaenv
284* ..
285* .. Intrinsic Functions ..
286 INTRINSIC ichar, int, max, min, mod, real, sqrt
287* ..
288* .. Executable Statements ..
289*
290* This is just to keep ftnchek and toolpack/1 happy
291 IF( block_cyclic_2d*csrc_*ctxt_*dlen_*dtype_*lld_*mb_*m_*nb_*n_*
292 $ rsrc_.LT.0 )RETURN
293* Get grid parameters
294*
295 ictxt = desca( ctxt_ )
296 CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
297*
298* Test the input parameters
299*
300 info = 0
301 IF( nprow.EQ.-1 ) THEN
302 info = -( 600+ctxt_ )
303 ELSE
304 CALL chk1mat( n, 2, n, 2, ia, ja, desca, 6, info )
305 upper = lsame( uplo, 'U' )
306 IF( info.EQ.0 ) THEN
307 nb = desca( nb_ )
308 iroffa = mod( ia-1, desca( mb_ ) )
309 icoffa = mod( ja-1, desca( nb_ ) )
310 iarow = indxg2p( ia, nb, myrow, desca( rsrc_ ), nprow )
311 iacol = indxg2p( ja, nb, mycol, desca( csrc_ ), npcol )
312 np = numroc( n, nb, myrow, iarow, nprow )
313 nq = max( 1, numroc( n+ja-1, nb, mycol, desca( csrc_ ),
314 $ npcol ) )
315 lwmin = max( ( np+1 )*nb, 3*nb )
316 anb = pjlaenv( ictxt, 3, 'PSSYTTRD', 'L', 0, 0, 0, 0 )
317 minsz = pjlaenv( ictxt, 5, 'PSSYTTRD', 'L', 0, 0, 0, 0 )
318 sqnpc = int( sqrt( real( nprow*npcol ) ) )
319 nps = max( numroc( n, 1, 0, 0, sqnpc ), 2*anb )
320 ttlwmin = 2*( anb+1 )*( 4*nps+2 ) + ( nps+4 )*nps
321*
322 work( 1 ) = real( ttlwmin )
323 lquery = ( lwork.EQ.-1 )
324 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
325 info = -1
326*
327* The following two restrictions are not necessary provided
328* that either of the tailored codes are used.
329*
330 ELSE IF( iroffa.NE.icoffa .OR. icoffa.NE.0 ) THEN
331 info = -5
332 ELSE IF( desca( mb_ ).NE.desca( nb_ ) ) THEN
333 info = -( 600+nb_ )
334 ELSE IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
335 info = -11
336 END IF
337 END IF
338 IF( upper ) THEN
339 idum1( 1 ) = ichar( 'U' )
340 ELSE
341 idum1( 1 ) = ichar( 'L' )
342 END IF
343 idum2( 1 ) = 1
344 IF( lwork.EQ.-1 ) THEN
345 idum1( 2 ) = -1
346 ELSE
347 idum1( 2 ) = 1
348 END IF
349 idum2( 2 ) = 11
350 CALL pchk1mat( n, 2, n, 2, ia, ja, desca, 6, 2, idum1, idum2,
351 $ info )
352 END IF
353*
354 IF( info.NE.0 ) THEN
355 CALL pxerbla( ictxt, 'PSSYNTRD', -info )
356 RETURN
357 ELSE IF( lquery ) THEN
358 RETURN
359 END IF
360*
361* Quick return if possible
362*
363 IF( n.EQ.0 )
364 $ RETURN
365*
366*
367 onepmin = n*n + 3*n + 1
368 llwork = lwork
369 CALL igamn2d( ictxt, 'A', ' ', 1, 1, llwork, 1, 1, -1, -1, -1,
370 $ -1 )
371*
372*
373*
374* Use the serial, LAPACK, code: STRD on small matrices if we
375* we have enough space.
376*
377 nprowb = 0
378 IF( ( n.LT.minsz .OR. sqnpc.EQ.1 ) .AND. llwork.GE.onepmin .AND.
379 $ .NOT.upper ) THEN
380 nprowb = 1
381 nps = n
382 ELSE
383 IF( llwork.GE.ttlwmin .AND. .NOT.upper ) THEN
384 nprowb = sqnpc
385 END IF
386 END IF
387*
388 IF( nprowb.GE.1 ) THEN
389 npcolb = nprowb
390 sqnpc = nprowb
391 indb = 1
392 indd = indb + nps*nps
393 inde = indd + nps
394 indtau = inde + nps
395 indw = indtau + nps
396 llwork = llwork - indw + 1
397*
398 CALL blacs_get( ictxt, 10, ctxtb )
399 CALL blacs_gridinit( ctxtb, 'Row major', sqnpc, sqnpc )
400 CALL blacs_gridinfo( ctxtb, nprowb, npcolb, myrowb, mycolb )
401 CALL descset( descb, n, n, 1, 1, 0, 0, ctxtb, nps )
402*
403 CALL pstrmr2d( uplo, 'N', n, n, a, ia, ja, desca, work( indb ),
404 $ 1, 1, descb, ictxt )
405*
406*
407* Only those processors in context CTXTB are needed for a while
408*
409 IF( nprowb.GT.0 ) THEN
410*
411 IF( nprowb.EQ.1 ) THEN
412 CALL ssytrd( uplo, n, work( indb ), nps, work( indd ),
413 $ work( inde ), work( indtau ), work( indw ),
414 $ llwork, info )
415 ELSE
416*
417 CALL pssyttrd( 'L', n, work( indb ), 1, 1, descb,
418 $ work( indd ), work( inde ),
419 $ work( indtau ), work( indw ), llwork,
420 $ info )
421*
422 END IF
423 END IF
424*
425* All processors participate in moving the data back to the
426* way that PSSYNTRD expects it.
427*
428 CALL pslamr1d( n-1, work( inde ), 1, 1, descb, e, 1, ja,
429 $ desca )
430*
431 CALL pslamr1d( n, work( indd ), 1, 1, descb, d, 1, ja, desca )
432*
433 CALL pslamr1d( n, work( indtau ), 1, 1, descb, tau, 1, ja,
434 $ desca )
435*
436 CALL pstrmr2d( uplo, 'N', n, n, work( indb ), 1, 1, descb, a,
437 $ ia, ja, desca, ictxt )
438*
439 IF( myrowb.GE.0 )
440 $ CALL blacs_gridexit( ctxtb )
441*
442 ELSE
443*
444 CALL pb_topget( ictxt, 'Combine', 'Columnwise', colctop )
445 CALL pb_topget( ictxt, 'Combine', 'Rowwise', rowctop )
446 CALL pb_topset( ictxt, 'Combine', 'Columnwise', '1-tree' )
447 CALL pb_topset( ictxt, 'Combine', 'Rowwise', '1-tree' )
448*
449 ipw = np*nb + 1
450*
451 IF( upper ) THEN
452*
453* Reduce the upper triangle of sub( A ).
454*
455 kk = mod( ja+n-1, nb )
456 IF( kk.EQ.0 )
457 $ kk = nb
458 CALL descset( descw, n, nb, nb, nb, iarow,
459 $ indxg2p( ja+n-kk, nb, mycol, desca( csrc_ ),
460 $ npcol ), ictxt, max( 1, np ) )
461*
462 DO 10 k = n - kk + 1, nb + 1, -nb
463 jb = min( n-k+1, nb )
464 i = ia + k - 1
465 j = ja + k - 1
466*
467* Reduce columns I:I+NB-1 to tridiagonal form and form
468* the matrix W which is needed to update the unreduced part of
469* the matrix
470*
471 CALL pslatrd( uplo, k+jb-1, jb, a, ia, ja, desca, d, e,
472 $ tau, work, 1, 1, descw, work( ipw ) )
473*
474* Update the unreduced submatrix A(IA:I-1,JA:J-1), using an
475* update of the form:
476* A(IA:I-1,JA:J-1) := A(IA:I-1,JA:J-1) - V*W' - W*V'
477*
478 CALL pssyr2k( uplo, 'No transpose', k-1, jb, -one, a, ia,
479 $ j, desca, work, 1, 1, descw, one, a, ia,
480 $ ja, desca )
481*
482* Copy last superdiagonal element back into sub( A )
483*
484 jx = min( indxg2l( j, nb, 0, iacol, npcol ), nq )
485 CALL pselset( a, i-1, j, desca, e( jx ) )
486*
487 descw( csrc_ ) = mod( descw( csrc_ )+npcol-1, npcol )
488*
489 10 CONTINUE
490*
491* Use unblocked code to reduce the last or only block
492*
493 CALL pssytd2( uplo, min( n, nb ), a, ia, ja, desca, d, e,
494 $ tau, work, lwork, iinfo )
495*
496 ELSE
497*
498* Reduce the lower triangle of sub( A )
499*
500 kk = mod( ja+n-1, nb )
501 IF( kk.EQ.0 )
502 $ kk = nb
503 CALL descset( descw, n, nb, nb, nb, iarow, iacol, ictxt,
504 $ max( 1, np ) )
505*
506 DO 20 k = 1, n - nb, nb
507 i = ia + k - 1
508 j = ja + k - 1
509*
510* Reduce columns I:I+NB-1 to tridiagonal form and form
511* the matrix W which is needed to update the unreduced part
512* of the matrix
513*
514 CALL pslatrd( uplo, n-k+1, nb, a, i, j, desca, d, e, tau,
515 $ work, k, 1, descw, work( ipw ) )
516*
517* Update the unreduced submatrix A(I+NB:IA+N-1,I+NB:IA+N-1),
518* using an update of the form: A(I+NB:IA+N-1,I+NB:IA+N-1) :=
519* A(I+NB:IA+N-1,I+NB:IA+N-1) - V*W' - W*V'
520*
521 CALL pssyr2k( uplo, 'No transpose', n-k-nb+1, nb, -one,
522 $ a, i+nb, j, desca, work, k+nb, 1, descw,
523 $ one, a, i+nb, j+nb, desca )
524*
525* Copy last subdiagonal element back into sub( A )
526*
527 jx = min( indxg2l( j+nb-1, nb, 0, iacol, npcol ), nq )
528 CALL pselset( a, i+nb, j+nb-1, desca, e( jx ) )
529*
530 descw( csrc_ ) = mod( descw( csrc_ )+1, npcol )
531*
532 20 CONTINUE
533*
534* Use unblocked code to reduce the last or only block
535*
536 CALL pssytd2( uplo, kk, a, ia+k-1, ja+k-1, desca, d, e, tau,
537 $ work, lwork, iinfo )
538 END IF
539*
540 CALL pb_topset( ictxt, 'Combine', 'Columnwise', colctop )
541 CALL pb_topset( ictxt, 'Combine', 'Rowwise', rowctop )
542*
543 END IF
544*
545 work( 1 ) = real( ttlwmin )
546*
547 RETURN
548*
549* End of PSSYNTRD
550*
551 END
subroutine chk1mat(ma, mapos0, na, napos0, ia, ja, desca, descapos0, info)
Definition chk1mat.f:3
subroutine descset(desc, m, n, mb, nb, irsrc, icsrc, ictxt, lld)
Definition descset.f:3
#define max(A, B)
Definition pcgemr.c:180
#define min(A, B)
Definition pcgemr.c:181
subroutine pchk1mat(ma, mapos0, na, napos0, ia, ja, desca, descapos0, nextra, ex, expos, info)
Definition pchkxmat.f:3
subroutine pselset(a, ia, ja, desca, alpha)
Definition pselset.f:2
subroutine pslamr1d(n, a, ia, ja, desca, b, ib, jb, descb)
Definition pslamr1d.f:2
subroutine pslatrd(uplo, n, nb, a, ia, ja, desca, d, e, tau, w, iw, jw, descw, work)
Definition pslatrd.f:3
subroutine pssyntrd(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)
Definition pssyntrd.f:3
subroutine pssytd2(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)
Definition pssytd2.f:3
subroutine pssyttrd(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)
Definition pssyttrd.f:3
subroutine pxerbla(ictxt, srname, info)
Definition pxerbla.f:2