LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
dsbevd_2stage.f
Go to the documentation of this file.
1*> \brief <b> DSBEVD_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
2*
3* @precisions fortran d -> s
4*
5* =========== DOCUMENTATION ===========
6*
7* Online html documentation available at
8* http://www.netlib.org/lapack/explore-html/
9*
10*> \htmlonly
11*> Download DSBEVD_2STAGE + dependencies
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsbevd_2stage.f">
13*> [TGZ]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsbevd_2stage.f">
15*> [ZIP]</a>
16*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsbevd_2stage.f">
17*> [TXT]</a>
18*> \endhtmlonly
19*
20* Definition:
21* ===========
22*
23* SUBROUTINE DSBEVD_2STAGE( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ,
24* WORK, LWORK, IWORK, LIWORK, INFO )
25*
26* IMPLICIT NONE
27*
28* .. Scalar Arguments ..
29* CHARACTER JOBZ, UPLO
30* INTEGER INFO, KD, LDAB, LDZ, LIWORK, LWORK, N
31* ..
32* .. Array Arguments ..
33* INTEGER IWORK( * )
34* DOUBLE PRECISION AB( LDAB, * ), W( * ), WORK( * ), Z( LDZ, * )
35* ..
36*
37*
38*> \par Purpose:
39* =============
40*>
41*> \verbatim
42*>
43*> DSBEVD_2STAGE computes all the eigenvalues and, optionally, eigenvectors of
44*> a real symmetric band matrix A using the 2stage technique for
45*> the reduction to tridiagonal. If eigenvectors are desired, it uses
46*> a divide and conquer algorithm.
47*>
48*> \endverbatim
49*
50* Arguments:
51* ==========
52*
53*> \param[in] JOBZ
54*> \verbatim
55*> JOBZ is CHARACTER*1
56*> = 'N': Compute eigenvalues only;
57*> = 'V': Compute eigenvalues and eigenvectors.
58*> Not available in this release.
59*> \endverbatim
60*>
61*> \param[in] UPLO
62*> \verbatim
63*> UPLO is CHARACTER*1
64*> = 'U': Upper triangle of A is stored;
65*> = 'L': Lower triangle of A is stored.
66*> \endverbatim
67*>
68*> \param[in] N
69*> \verbatim
70*> N is INTEGER
71*> The order of the matrix A. N >= 0.
72*> \endverbatim
73*>
74*> \param[in] KD
75*> \verbatim
76*> KD is INTEGER
77*> The number of superdiagonals of the matrix A if UPLO = 'U',
78*> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
79*> \endverbatim
80*>
81*> \param[in,out] AB
82*> \verbatim
83*> AB is DOUBLE PRECISION array, dimension (LDAB, N)
84*> On entry, the upper or lower triangle of the symmetric band
85*> matrix A, stored in the first KD+1 rows of the array. The
86*> j-th column of A is stored in the j-th column of the array AB
87*> as follows:
88*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
89*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
90*>
91*> On exit, AB is overwritten by values generated during the
92*> reduction to tridiagonal form. If UPLO = 'U', the first
93*> superdiagonal and the diagonal of the tridiagonal matrix T
94*> are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
95*> the diagonal and first subdiagonal of T are returned in the
96*> first two rows of AB.
97*> \endverbatim
98*>
99*> \param[in] LDAB
100*> \verbatim
101*> LDAB is INTEGER
102*> The leading dimension of the array AB. LDAB >= KD + 1.
103*> \endverbatim
104*>
105*> \param[out] W
106*> \verbatim
107*> W is DOUBLE PRECISION array, dimension (N)
108*> If INFO = 0, the eigenvalues in ascending order.
109*> \endverbatim
110*>
111*> \param[out] Z
112*> \verbatim
113*> Z is DOUBLE PRECISION array, dimension (LDZ, N)
114*> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
115*> eigenvectors of the matrix A, with the i-th column of Z
116*> holding the eigenvector associated with W(i).
117*> If JOBZ = 'N', then Z is not referenced.
118*> \endverbatim
119*>
120*> \param[in] LDZ
121*> \verbatim
122*> LDZ is INTEGER
123*> The leading dimension of the array Z. LDZ >= 1, and if
124*> JOBZ = 'V', LDZ >= max(1,N).
125*> \endverbatim
126*>
127*> \param[out] WORK
128*> \verbatim
129*> WORK is DOUBLE PRECISION array, dimension LWORK
130*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
131*> \endverbatim
132*>
133*> \param[in] LWORK
134*> \verbatim
135*> LWORK is INTEGER
136*> The length of the array WORK. LWORK >= 1, when N <= 1;
137*> otherwise
138*> If JOBZ = 'N' and N > 1, LWORK must be queried.
139*> LWORK = MAX(1, dimension) where
140*> dimension = (2KD+1)*N + KD*NTHREADS + N
141*> where KD is the size of the band.
142*> NTHREADS is the number of threads used when
143*> openMP compilation is enabled, otherwise =1.
144*> If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available.
145*>
146*> If LWORK = -1, then a workspace query is assumed; the routine
147*> only calculates the optimal sizes of the WORK and IWORK
148*> arrays, returns these values as the first entries of the WORK
149*> and IWORK arrays, and no error message related to LWORK or
150*> LIWORK is issued by XERBLA.
151*> \endverbatim
152*>
153*> \param[out] IWORK
154*> \verbatim
155*> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
156*> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
157*> \endverbatim
158*>
159*> \param[in] LIWORK
160*> \verbatim
161*> LIWORK is INTEGER
162*> The dimension of the array IWORK.
163*> If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
164*> If JOBZ = 'V' and N > 2, LIWORK must be at least 3 + 5*N.
165*>
166*> If LIWORK = -1, then a workspace query is assumed; the
167*> routine only calculates the optimal sizes of the WORK and
168*> IWORK arrays, returns these values as the first entries of
169*> the WORK and IWORK arrays, and no error message related to
170*> LWORK or LIWORK is issued by XERBLA.
171*> \endverbatim
172*>
173*> \param[out] INFO
174*> \verbatim
175*> INFO is INTEGER
176*> = 0: successful exit
177*> < 0: if INFO = -i, the i-th argument had an illegal value
178*> > 0: if INFO = i, the algorithm failed to converge; i
179*> off-diagonal elements of an intermediate tridiagonal
180*> form did not converge to zero.
181*> \endverbatim
182*
183* Authors:
184* ========
185*
186*> \author Univ. of Tennessee
187*> \author Univ. of California Berkeley
188*> \author Univ. of Colorado Denver
189*> \author NAG Ltd.
190*
191*> \ingroup hbevd_2stage
192*
193*> \par Further Details:
194* =====================
195*>
196*> \verbatim
197*>
198*> All details about the 2stage techniques are available in:
199*>
200*> Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
201*> Parallel reduction to condensed forms for symmetric eigenvalue problems
202*> using aggregated fine-grained and memory-aware kernels. In Proceedings
203*> of 2011 International Conference for High Performance Computing,
204*> Networking, Storage and Analysis (SC '11), New York, NY, USA,
205*> Article 8 , 11 pages.
206*> http://doi.acm.org/10.1145/2063384.2063394
207*>
208*> A. Haidar, J. Kurzak, P. Luszczek, 2013.
209*> An improved parallel singular value algorithm and its implementation
210*> for multicore hardware, In Proceedings of 2013 International Conference
211*> for High Performance Computing, Networking, Storage and Analysis (SC '13).
212*> Denver, Colorado, USA, 2013.
213*> Article 90, 12 pages.
214*> http://doi.acm.org/10.1145/2503210.2503292
215*>
216*> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
217*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure
218*> calculations based on fine-grained memory aware tasks.
219*> International Journal of High Performance Computing Applications.
220*> Volume 28 Issue 2, Pages 196-209, May 2014.
221*> http://hpc.sagepub.com/content/28/2/196
222*>
223*> \endverbatim
224*
225* =====================================================================
226 SUBROUTINE dsbevd_2stage( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ,
227 $ WORK, LWORK, IWORK, LIWORK, INFO )
228*
229 IMPLICIT NONE
230*
231* -- LAPACK driver routine --
232* -- LAPACK is a software package provided by Univ. of Tennessee, --
233* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
234*
235* .. Scalar Arguments ..
236 CHARACTER JOBZ, UPLO
237 INTEGER INFO, KD, LDAB, LDZ, LIWORK, LWORK, N
238* ..
239* .. Array Arguments ..
240 INTEGER IWORK( * )
241 DOUBLE PRECISION AB( LDAB, * ), W( * ), WORK( * ), Z( LDZ, * )
242* ..
243*
244* =====================================================================
245*
246* .. Parameters ..
247 DOUBLE PRECISION ZERO, ONE
248 parameter( zero = 0.0d+0, one = 1.0d+0 )
249* ..
250* .. Local Scalars ..
251 LOGICAL LOWER, LQUERY, WANTZ
252 INTEGER IINFO, INDE, INDWK2, INDWRK, ISCALE, LIWMIN,
253 $ llwork, lwmin, lhtrd, lwtrd, ib, indhous,
254 $ llwrk2
255 DOUBLE PRECISION ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
256 $ smlnum
257* ..
258* .. External Functions ..
259 LOGICAL LSAME
260 INTEGER ILAENV2STAGE
261 DOUBLE PRECISION DLAMCH, DLANSB
262 EXTERNAL lsame, dlamch, dlansb, ilaenv2stage
263* ..
264* .. External Subroutines ..
265 EXTERNAL dgemm, dlacpy, dlascl, dscal, dstedc,
267* ..
268* .. Intrinsic Functions ..
269 INTRINSIC sqrt
270* ..
271* .. Executable Statements ..
272*
273* Test the input parameters.
274*
275 wantz = lsame( jobz, 'V' )
276 lower = lsame( uplo, 'L' )
277 lquery = ( lwork.EQ.-1 .OR. liwork.EQ.-1 )
278*
279 info = 0
280 IF( n.LE.1 ) THEN
281 liwmin = 1
282 lwmin = 1
283 ELSE
284 ib = ilaenv2stage( 2, 'DSYTRD_SB2ST', jobz, n, kd, -1, -1 )
285 lhtrd = ilaenv2stage( 3, 'DSYTRD_SB2ST', jobz, n, kd, ib, -1 )
286 lwtrd = ilaenv2stage( 4, 'DSYTRD_SB2ST', jobz, n, kd, ib, -1 )
287 IF( wantz ) THEN
288 liwmin = 3 + 5*n
289 lwmin = 1 + 5*n + 2*n**2
290 ELSE
291 liwmin = 1
292 lwmin = max( 2*n, n+lhtrd+lwtrd )
293 END IF
294 END IF
295 IF( .NOT.( lsame( jobz, 'N' ) ) ) THEN
296 info = -1
297 ELSE IF( .NOT.( lower .OR. lsame( uplo, 'U' ) ) ) THEN
298 info = -2
299 ELSE IF( n.LT.0 ) THEN
300 info = -3
301 ELSE IF( kd.LT.0 ) THEN
302 info = -4
303 ELSE IF( ldab.LT.kd+1 ) THEN
304 info = -6
305 ELSE IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.n ) ) THEN
306 info = -9
307 END IF
308*
309 IF( info.EQ.0 ) THEN
310 work( 1 ) = lwmin
311 iwork( 1 ) = liwmin
312*
313 IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
314 info = -11
315 ELSE IF( liwork.LT.liwmin .AND. .NOT.lquery ) THEN
316 info = -13
317 END IF
318 END IF
319*
320 IF( info.NE.0 ) THEN
321 CALL xerbla( 'DSBEVD_2STAGE', -info )
322 RETURN
323 ELSE IF( lquery ) THEN
324 RETURN
325 END IF
326*
327* Quick return if possible
328*
329 IF( n.EQ.0 )
330 $ RETURN
331*
332 IF( n.EQ.1 ) THEN
333 w( 1 ) = ab( 1, 1 )
334 IF( wantz )
335 $ z( 1, 1 ) = one
336 RETURN
337 END IF
338*
339* Get machine constants.
340*
341 safmin = dlamch( 'Safe minimum' )
342 eps = dlamch( 'Precision' )
343 smlnum = safmin / eps
344 bignum = one / smlnum
345 rmin = sqrt( smlnum )
346 rmax = sqrt( bignum )
347*
348* Scale matrix to allowable range, if necessary.
349*
350 anrm = dlansb( 'M', uplo, n, kd, ab, ldab, work )
351 iscale = 0
352 IF( anrm.GT.zero .AND. anrm.LT.rmin ) THEN
353 iscale = 1
354 sigma = rmin / anrm
355 ELSE IF( anrm.GT.rmax ) THEN
356 iscale = 1
357 sigma = rmax / anrm
358 END IF
359 IF( iscale.EQ.1 ) THEN
360 IF( lower ) THEN
361 CALL dlascl( 'B', kd, kd, one, sigma, n, n, ab, ldab, info )
362 ELSE
363 CALL dlascl( 'Q', kd, kd, one, sigma, n, n, ab, ldab, info )
364 END IF
365 END IF
366*
367* Call DSYTRD_SB2ST to reduce band symmetric matrix to tridiagonal form.
368*
369 inde = 1
370 indhous = inde + n
371 indwrk = indhous + lhtrd
372 llwork = lwork - indwrk + 1
373 indwk2 = indwrk + n*n
374 llwrk2 = lwork - indwk2 + 1
375*
376 CALL dsytrd_sb2st( "N", jobz, uplo, n, kd, ab, ldab, w,
377 $ work( inde ), work( indhous ), lhtrd,
378 $ work( indwrk ), llwork, iinfo )
379*
380* For eigenvalues only, call DSTERF. For eigenvectors, call SSTEDC.
381*
382 IF( .NOT.wantz ) THEN
383 CALL dsterf( n, w, work( inde ), info )
384 ELSE
385 CALL dstedc( 'I', n, w, work( inde ), work( indwrk ), n,
386 $ work( indwk2 ), llwrk2, iwork, liwork, info )
387 CALL dgemm( 'N', 'N', n, n, n, one, z, ldz, work( indwrk ), n,
388 $ zero, work( indwk2 ), n )
389 CALL dlacpy( 'A', n, n, work( indwk2 ), n, z, ldz )
390 END IF
391*
392* If matrix was scaled, then rescale eigenvalues appropriately.
393*
394 IF( iscale.EQ.1 )
395 $ CALL dscal( n, one / sigma, w, 1 )
396*
397 work( 1 ) = lwmin
398 iwork( 1 ) = liwmin
399 RETURN
400*
401* End of DSBEVD_2STAGE
402*
403 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
DGEMM
Definition dgemm.f:188
subroutine dsbevd_2stage(jobz, uplo, n, kd, ab, ldab, w, z, ldz, work, lwork, iwork, liwork, info)
DSBEVD_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER ...
subroutine dsytrd_sb2st(stage1, vect, uplo, n, kd, ab, ldab, d, e, hous, lhous, work, lwork, info)
DSYTRD_SB2ST reduces a real symmetric band matrix A to real symmetric tridiagonal form T
subroutine dlacpy(uplo, m, n, a, lda, b, ldb)
DLACPY copies all or part of one two-dimensional array to another.
Definition dlacpy.f:103
subroutine dlascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)
DLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
Definition dlascl.f:143
subroutine dscal(n, da, dx, incx)
DSCAL
Definition dscal.f:79
subroutine dstedc(compz, n, d, e, z, ldz, work, lwork, iwork, liwork, info)
DSTEDC
Definition dstedc.f:182
subroutine dsterf(n, d, e, info)
DSTERF
Definition dsterf.f:86