LAPACK 3.12.0 LAPACK: Linear Algebra PACKage
Searching...
No Matches

## ◆ cchksy()

 subroutine cchksy ( logical, dimension( * ) dotype, integer nn, integer, dimension( * ) nval, integer nnb, integer, dimension( * ) nbval, integer nns, integer, dimension( * ) nsval, real thresh, logical tsterr, integer nmax, complex, dimension( * ) a, complex, dimension( * ) afac, complex, dimension( * ) ainv, complex, dimension( * ) b, complex, dimension( * ) x, complex, dimension( * ) xact, complex, dimension( * ) work, real, dimension( * ) rwork, integer, dimension( * ) iwork, integer nout )

CCHKSY

Purpose:
` CCHKSY tests CSYTRF, -TRI2, -TRS, -TRS2, -RFS, and -CON.`
Parameters
 [in] DOTYPE ``` DOTYPE is LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.``` [in] NN ``` NN is INTEGER The number of values of N contained in the vector NVAL.``` [in] NVAL ``` NVAL is INTEGER array, dimension (NN) The values of the matrix dimension N.``` [in] NNB ``` NNB is INTEGER The number of values of NB contained in the vector NBVAL.``` [in] NBVAL ``` NBVAL is INTEGER array, dimension (NNB) The values of the blocksize NB.``` [in] NNS ``` NNS is INTEGER The number of values of NRHS contained in the vector NSVAL.``` [in] NSVAL ``` NSVAL is INTEGER array, dimension (NNS) The values of the number of right hand sides NRHS.``` [in] THRESH ``` THRESH is REAL The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0.``` [in] TSTERR ``` TSTERR is LOGICAL Flag that indicates whether error exits are to be tested.``` [in] NMAX ``` NMAX is INTEGER The maximum value permitted for N, used in dimensioning the work arrays.``` [out] A ` A is COMPLEX array, dimension (NMAX*NMAX)` [out] AFAC ` AFAC is COMPLEX array, dimension (NMAX*NMAX)` [out] AINV ` AINV is COMPLEX array, dimension (NMAX*NMAX)` [out] B ``` B is COMPLEX array, dimension (NMAX*NSMAX) where NSMAX is the largest entry in NSVAL.``` [out] X ` X is COMPLEX array, dimension (NMAX*NSMAX)` [out] XACT ` XACT is COMPLEX array, dimension (NMAX*NSMAX)` [out] WORK ` WORK is COMPLEX array, dimension (NMAX*max(2,NSMAX))` [out] RWORK ` RWORK is REAL array, dimension (NMAX+2*NSMAX)` [out] IWORK ` IWORK is INTEGER array, dimension (NMAX)` [in] NOUT ``` NOUT is INTEGER The unit number for output.```

Definition at line 168 of file cchksy.f.

171*
172* -- LAPACK test routine --
173* -- LAPACK is a software package provided by Univ. of Tennessee, --
174* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
175*
176* .. Scalar Arguments ..
177 LOGICAL TSTERR
178 INTEGER NMAX, NN, NNB, NNS, NOUT
179 REAL THRESH
180* ..
181* .. Array Arguments ..
182 LOGICAL DOTYPE( * )
183 INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
184 REAL RWORK( * )
185 COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ),
186 \$ WORK( * ), X( * ), XACT( * )
187* ..
188*
189* =====================================================================
190*
191* .. Parameters ..
192 REAL ZERO
193 parameter( zero = 0.0e+0 )
194 COMPLEX CZERO
195 parameter( czero = ( 0.0e+0, 0.0e+0 ) )
196 INTEGER NTYPES
197 parameter( ntypes = 11 )
198 INTEGER NTESTS
199 parameter( ntests = 9 )
200* ..
201* .. Local Scalars ..
202 LOGICAL TRFCON, ZEROT
203 CHARACTER DIST, TYPE, UPLO, XTYPE
204 CHARACTER*3 PATH
205 INTEGER I, I1, I2, IMAT, IN, INB, INFO, IOFF, IRHS,
206 \$ IUPLO, IZERO, J, K, KL, KU, LDA, LWORK, MODE,
207 \$ N, NB, NERRS, NFAIL, NIMAT, NRHS, NRUN, NT
208 REAL ANORM, CNDNUM, RCOND, RCONDC
209* ..
210* .. Local Arrays ..
211 CHARACTER UPLOS( 2 )
212 INTEGER ISEED( 4 ), ISEEDY( 4 )
213 REAL RESULT( NTESTS )
214* ..
215* .. External Functions ..
216 REAL SGET06, CLANSY
217 EXTERNAL sget06, clansy
218* ..
219* .. External Subroutines ..
220 EXTERNAL alaerh, alahd, alasum, cerrsy, cget04, clacpy,
224* ..
225* .. Intrinsic Functions ..
226 INTRINSIC max, min
227* ..
228* .. Scalars in Common ..
229 LOGICAL LERR, OK
230 CHARACTER*32 SRNAMT
231 INTEGER INFOT, NUNIT
232* ..
233* .. Common blocks ..
234 COMMON / infoc / infot, nunit, ok, lerr
235 COMMON / srnamc / srnamt
236* ..
237* .. Data statements ..
238 DATA iseedy / 1988, 1989, 1990, 1991 /
239 DATA uplos / 'U', 'L' /
240* ..
241* .. Executable Statements ..
242*
243* Initialize constants and the random number seed.
244*
245 path( 1: 1 ) = 'Complex precision'
246 path( 2: 3 ) = 'SY'
247 nrun = 0
248 nfail = 0
249 nerrs = 0
250 DO 10 i = 1, 4
251 iseed( i ) = iseedy( i )
252 10 CONTINUE
253*
254* Test the error exits
255*
256 IF( tsterr )
257 \$ CALL cerrsy( path, nout )
258 infot = 0
259*
260* Set the minimum block size for which the block routine should
261* be used, which will be later returned by ILAENV
262*
263 CALL xlaenv( 2, 2 )
264*
265* Do for each value of N in NVAL
266*
267 DO 180 in = 1, nn
268 n = nval( in )
269 lda = max( n, 1 )
270 xtype = 'N'
271 nimat = ntypes
272 IF( n.LE.0 )
273 \$ nimat = 1
274*
275 izero = 0
276*
277* Do for each value of matrix type IMAT
278*
279 DO 170 imat = 1, nimat
280*
281* Do the tests only if DOTYPE( IMAT ) is true.
282*
283 IF( .NOT.dotype( imat ) )
284 \$ GO TO 170
285*
286* Skip types 3, 4, 5, or 6 if the matrix size is too small.
287*
288 zerot = imat.GE.3 .AND. imat.LE.6
289 IF( zerot .AND. n.LT.imat-2 )
290 \$ GO TO 170
291*
292* Do first for UPLO = 'U', then for UPLO = 'L'
293*
294 DO 160 iuplo = 1, 2
295 uplo = uplos( iuplo )
296*
297* Begin generate test matrix A.
298*
299 IF( imat.NE.ntypes ) THEN
300*
301* Set up parameters with CLATB4 for the matrix generator
302* based on the type of matrix to be generated.
303*
304 CALL clatb4( path, imat, n, n, TYPE, KL, KU, ANORM,
305 \$ MODE, CNDNUM, DIST )
306*
307* Generate a matrix with CLATMS.
308*
309 srnamt = 'CLATMS'
310 CALL clatms( n, n, dist, iseed, TYPE, RWORK, MODE,
311 \$ CNDNUM, ANORM, KL, KU, 'N', A, LDA, WORK,
312 \$ INFO )
313*
314* Check error code from CLATMS and handle error.
315*
316 IF( info.NE.0 ) THEN
317 CALL alaerh( path, 'CLATMS', info, 0, uplo, n, n,
318 \$ -1, -1, -1, imat, nfail, nerrs, nout )
319*
320* Skip all tests for this generated matrix
321*
322 GO TO 160
323 END IF
324*
325* For matrix types 3-6, zero one or more rows and
326* columns of the matrix to test that INFO is returned
327* correctly.
328*
329 IF( zerot ) THEN
330 IF( imat.EQ.3 ) THEN
331 izero = 1
332 ELSE IF( imat.EQ.4 ) THEN
333 izero = n
334 ELSE
335 izero = n / 2 + 1
336 END IF
337*
338 IF( imat.LT.6 ) THEN
339*
340* Set row and column IZERO to zero.
341*
342 IF( iuplo.EQ.1 ) THEN
343 ioff = ( izero-1 )*lda
344 DO 20 i = 1, izero - 1
345 a( ioff+i ) = czero
346 20 CONTINUE
347 ioff = ioff + izero
348 DO 30 i = izero, n
349 a( ioff ) = czero
350 ioff = ioff + lda
351 30 CONTINUE
352 ELSE
353 ioff = izero
354 DO 40 i = 1, izero - 1
355 a( ioff ) = czero
356 ioff = ioff + lda
357 40 CONTINUE
358 ioff = ioff - izero
359 DO 50 i = izero, n
360 a( ioff+i ) = czero
361 50 CONTINUE
362 END IF
363 ELSE
364 IF( iuplo.EQ.1 ) THEN
365*
366* Set the first IZERO rows to zero.
367*
368 ioff = 0
369 DO 70 j = 1, n
370 i2 = min( j, izero )
371 DO 60 i = 1, i2
372 a( ioff+i ) = czero
373 60 CONTINUE
374 ioff = ioff + lda
375 70 CONTINUE
376 ELSE
377*
378* Set the last IZERO rows to zero.
379*
380 ioff = 0
381 DO 90 j = 1, n
382 i1 = max( j, izero )
383 DO 80 i = i1, n
384 a( ioff+i ) = czero
385 80 CONTINUE
386 ioff = ioff + lda
387 90 CONTINUE
388 END IF
389 END IF
390 ELSE
391 izero = 0
392 END IF
393*
394 ELSE
395*
396* For matrix kind IMAT = 11, generate special block
397* diagonal matrix to test alternate code
398* for the 2 x 2 blocks.
399*
400 CALL clatsy( uplo, n, a, lda, iseed )
401*
402 END IF
403*
404* End generate test matrix A.
405*
406*
407* Do for each value of NB in NBVAL
408*
409 DO 150 inb = 1, nnb
410*
411* Set the optimal blocksize, which will be later
412* returned by ILAENV.
413*
414 nb = nbval( inb )
415 CALL xlaenv( 1, nb )
416*
417* Copy the test matrix A into matrix AFAC which
418* will be factorized in place. This is needed to
419* preserve the test matrix A for subsequent tests.
420*
421 CALL clacpy( uplo, n, n, a, lda, afac, lda )
422*
423* Compute the L*D*L**T or U*D*U**T factorization of the
424* matrix. IWORK stores details of the interchanges and
425* the block structure of D. AINV is a work array for
426* block factorization, LWORK is the length of AINV.
427*
428 lwork = max( 2, nb )*lda
429 srnamt = 'CSYTRF'
430 CALL csytrf( uplo, n, afac, lda, iwork, ainv, lwork,
431 \$ info )
432*
433* Adjust the expected value of INFO to account for
434* pivoting.
435*
436 k = izero
437 IF( k.GT.0 ) THEN
438 100 CONTINUE
439 IF( iwork( k ).LT.0 ) THEN
440 IF( iwork( k ).NE.-k ) THEN
441 k = -iwork( k )
442 GO TO 100
443 END IF
444 ELSE IF( iwork( k ).NE.k ) THEN
445 k = iwork( k )
446 GO TO 100
447 END IF
448 END IF
449*
450* Check error code from CSYTRF and handle error.
451*
452 IF( info.NE.k )
453 \$ CALL alaerh( path, 'CSYTRF', info, k, uplo, n, n,
454 \$ -1, -1, nb, imat, nfail, nerrs, nout )
455*
456* Set the condition estimate flag if the INFO is not 0.
457*
458 IF( info.NE.0 ) THEN
459 trfcon = .true.
460 ELSE
461 trfcon = .false.
462 END IF
463*
464*+ TEST 1
465* Reconstruct matrix from factors and compute residual.
466*
467 CALL csyt01( uplo, n, a, lda, afac, lda, iwork, ainv,
468 \$ lda, rwork, result( 1 ) )
469 nt = 1
470*
471*+ TEST 2
472* Form the inverse and compute the residual,
473* if the factorization was competed without INFO > 0
474* (i.e. there is no zero rows and columns).
475* Do it only for the first block size.
476*
477 IF( inb.EQ.1 .AND. .NOT.trfcon ) THEN
478 CALL clacpy( uplo, n, n, afac, lda, ainv, lda )
479 srnamt = 'CSYTRI2'
480 lwork = (n+nb+1)*(nb+3)
481 CALL csytri2( uplo, n, ainv, lda, iwork, work,
482 \$ lwork, info )
483*
484* Check error code from CSYTRI2 and handle error.
485*
486 IF( info.NE.0 )
487 \$ CALL alaerh( path, 'CSYTRI2', info, 0, uplo, n,
488 \$ n, -1, -1, -1, imat, nfail, nerrs,
489 \$ nout )
490*
491* Compute the residual for a symmetric matrix times
492* its inverse.
493*
494 CALL csyt03( uplo, n, a, lda, ainv, lda, work, lda,
495 \$ rwork, rcondc, result( 2 ) )
496 nt = 2
497 END IF
498*
499* Print information about the tests that did not pass
500* the threshold.
501*
502 DO 110 k = 1, nt
503 IF( result( k ).GE.thresh ) THEN
504 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
505 \$ CALL alahd( nout, path )
506 WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
507 \$ result( k )
508 nfail = nfail + 1
509 END IF
510 110 CONTINUE
511 nrun = nrun + nt
512*
513* Skip the other tests if this is not the first block
514* size.
515*
516 IF( inb.GT.1 )
517 \$ GO TO 150
518*
519* Do only the condition estimate if INFO is not 0.
520*
521 IF( trfcon ) THEN
522 rcondc = zero
523 GO TO 140
524 END IF
525*
526* Do for each value of NRHS in NSVAL.
527*
528 DO 130 irhs = 1, nns
529 nrhs = nsval( irhs )
530*
531*+ TEST 3 (Using TRS)
532* Solve and compute residual for A * X = B.
533*
534* Choose a set of NRHS random solution vectors
535* stored in XACT and set up the right hand side B
536*
537 srnamt = 'CLARHS'
538 CALL clarhs( path, xtype, uplo, ' ', n, n, kl, ku,
539 \$ nrhs, a, lda, xact, lda, b, lda,
540 \$ iseed, info )
541 CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
542*
543 srnamt = 'CSYTRS'
544 CALL csytrs( uplo, n, nrhs, afac, lda, iwork, x,
545 \$ lda, info )
546*
547* Check error code from CSYTRS and handle error.
548*
549 IF( info.NE.0 )
550 \$ CALL alaerh( path, 'CSYTRS', info, 0, uplo, n,
551 \$ n, -1, -1, nrhs, imat, nfail,
552 \$ nerrs, nout )
553*
554 CALL clacpy( 'Full', n, nrhs, b, lda, work, lda )
555*
556* Compute the residual for the solution
557*
558 CALL csyt02( uplo, n, nrhs, a, lda, x, lda, work,
559 \$ lda, rwork, result( 3 ) )
560*
561*+ TEST 4 (Using TRS2)
562* Solve and compute residual for A * X = B.
563*
564* Choose a set of NRHS random solution vectors
565* stored in XACT and set up the right hand side B
566*
567 srnamt = 'CLARHS'
568 CALL clarhs( path, xtype, uplo, ' ', n, n, kl, ku,
569 \$ nrhs, a, lda, xact, lda, b, lda,
570 \$ iseed, info )
571 CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
572*
573 srnamt = 'CSYTRS2'
574 CALL csytrs2( uplo, n, nrhs, afac, lda, iwork, x,
575 \$ lda, work, info )
576*
577* Check error code from CSYTRS2 and handle error.
578*
579 IF( info.NE.0 )
580 \$ CALL alaerh( path, 'CSYTRS2', info, 0, uplo, n,
581 \$ n, -1, -1, nrhs, imat, nfail,
582 \$ nerrs, nout )
583*
584 CALL clacpy( 'Full', n, nrhs, b, lda, work, lda )
585*
586* Compute the residual for the solution
587*
588 CALL csyt02( uplo, n, nrhs, a, lda, x, lda, work,
589 \$ lda, rwork, result( 4 ) )
590*
591*+ TEST 5
592* Check solution from generated exact solution.
593*
594 CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
595 \$ result( 5 ) )
596*
597*+ TESTS 6, 7, and 8
598* Use iterative refinement to improve the solution.
599*
600 srnamt = 'CSYRFS'
601 CALL csyrfs( uplo, n, nrhs, a, lda, afac, lda,
602 \$ iwork, b, lda, x, lda, rwork,
603 \$ rwork( nrhs+1 ), work,
604 \$ rwork( 2*nrhs+1 ), info )
605*
606* Check error code from CSYRFS and handle error.
607*
608 IF( info.NE.0 )
609 \$ CALL alaerh( path, 'CSYRFS', info, 0, uplo, n,
610 \$ n, -1, -1, nrhs, imat, nfail,
611 \$ nerrs, nout )
612*
613 CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
614 \$ result( 6 ) )
615 CALL cpot05( uplo, n, nrhs, a, lda, b, lda, x, lda,
616 \$ xact, lda, rwork, rwork( nrhs+1 ),
617 \$ result( 7 ) )
618*
619* Print information about the tests that did not pass
620* the threshold.
621*
622 DO 120 k = 3, 8
623 IF( result( k ).GE.thresh ) THEN
624 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
625 \$ CALL alahd( nout, path )
626 WRITE( nout, fmt = 9998 )uplo, n, nrhs,
627 \$ imat, k, result( k )
628 nfail = nfail + 1
629 END IF
630 120 CONTINUE
631 nrun = nrun + 6
632*
633* End do for each value of NRHS in NSVAL.
634*
635 130 CONTINUE
636*
637*+ TEST 9
638* Get an estimate of RCOND = 1/CNDNUM.
639*
640 140 CONTINUE
641 anorm = clansy( '1', uplo, n, a, lda, rwork )
642 srnamt = 'CSYCON'
643 CALL csycon( uplo, n, afac, lda, iwork, anorm, rcond,
644 \$ work, info )
645*
646* Check error code from CSYCON and handle error.
647*
648 IF( info.NE.0 )
649 \$ CALL alaerh( path, 'CSYCON', info, 0, uplo, n, n,
650 \$ -1, -1, -1, imat, nfail, nerrs, nout )
651*
652* Compute the test ratio to compare values of RCOND
653*
654 result( 9 ) = sget06( rcond, rcondc )
655*
656* Print information about the tests that did not pass
657* the threshold.
658*
659 IF( result( 9 ).GE.thresh ) THEN
660 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
661 \$ CALL alahd( nout, path )
662 WRITE( nout, fmt = 9997 )uplo, n, imat, 9,
663 \$ result( 9 )
664 nfail = nfail + 1
665 END IF
666 nrun = nrun + 1
667 150 CONTINUE
668 160 CONTINUE
669 170 CONTINUE
670 180 CONTINUE
671*
672* Print a summary of the results.
673*
674 CALL alasum( path, nout, nfail, nrun, nerrs )
675*
676 9999 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NB =', i4, ', type ',
677 \$ i2, ', test ', i2, ', ratio =', g12.5 )
678 9998 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NRHS=', i3, ', type ',
679 \$ i2, ', test(', i2, ') =', g12.5 )
680 9997 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ',', 10x, ' type ', i2,
681 \$ ', test(', i2, ') =', g12.5 )
682 RETURN
683*
684* End of CCHKSY
685*
subroutine alasum(type, nout, nfail, nrun, nerrs)
ALASUM
Definition alasum.f:73
subroutine clarhs(path, xtype, uplo, trans, m, n, kl, ku, nrhs, a, lda, x, ldx, b, ldb, iseed, info)
CLARHS
Definition clarhs.f:208
subroutine xlaenv(ispec, nvalue)
XLAENV
Definition xlaenv.f:81
subroutine alaerh(path, subnam, info, infoe, opts, m, n, kl, ku, n5, imat, nfail, nerrs, nout)
ALAERH
Definition alaerh.f:147
subroutine alahd(iounit, path)
ALAHD
Definition alahd.f:107
subroutine cerrsy(path, nunit)
CERRSY
Definition cerrsy.f:55
subroutine cget04(n, nrhs, x, ldx, xact, ldxact, rcond, resid)
CGET04
Definition cget04.f:102
subroutine clatb4(path, imat, m, n, type, kl, ku, anorm, mode, cndnum, dist)
CLATB4
Definition clatb4.f:121
subroutine clatms(m, n, dist, iseed, sym, d, mode, cond, dmax, kl, ku, pack, a, lda, work, info)
CLATMS
Definition clatms.f:332
subroutine clatsy(uplo, n, x, ldx, iseed)
CLATSY
Definition clatsy.f:89
subroutine cpot05(uplo, n, nrhs, a, lda, b, ldb, x, ldx, xact, ldxact, ferr, berr, reslts)
CPOT05
Definition cpot05.f:165
subroutine csyt01(uplo, n, a, lda, afac, ldafac, ipiv, c, ldc, rwork, resid)
CSYT01
Definition csyt01.f:125
subroutine csyt02(uplo, n, nrhs, a, lda, x, ldx, b, ldb, rwork, resid)
CSYT02
Definition csyt02.f:127
subroutine csyt03(uplo, n, a, lda, ainv, ldainv, work, ldwork, rwork, rcond, resid)
CSYT03
Definition csyt03.f:126
subroutine csycon(uplo, n, a, lda, ipiv, anorm, rcond, work, info)
CSYCON
Definition csycon.f:125
subroutine csyrfs(uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork, info)
CSYRFS
Definition csyrfs.f:192
subroutine csytrf(uplo, n, a, lda, ipiv, work, lwork, info)
CSYTRF
Definition csytrf.f:182
subroutine csytri2(uplo, n, a, lda, ipiv, work, lwork, info)
CSYTRI2
Definition csytri2.f:127
subroutine csytrs2(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, info)
CSYTRS2
Definition csytrs2.f:132
subroutine csytrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
CSYTRS
Definition csytrs.f:120
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:103
real function clansy(norm, uplo, n, a, lda, work)
CLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition clansy.f:123
real function sget06(rcond, rcondc)
SGET06
Definition sget06.f:55
Here is the call graph for this function:
Here is the caller graph for this function: