LAPACK  3.10.0
LAPACK: Linear Algebra PACKage
cchksy.f
Go to the documentation of this file.
1 *> \brief \b CCHKSY
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE CCHKSY( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
12 * THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X,
13 * XACT, WORK, RWORK, IWORK, NOUT )
14 *
15 * .. Scalar Arguments ..
16 * LOGICAL TSTERR
17 * INTEGER NMAX, NN, NNB, NNS, NOUT
18 * REAL THRESH
19 * ..
20 * .. Array Arguments ..
21 * LOGICAL DOTYPE( * )
22 * INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
23 * REAL RWORK( * )
24 * COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ),
25 * $ WORK( * ), X( * ), XACT( * )
26 * ..
27 *
28 *
29 *> \par Purpose:
30 * =============
31 *>
32 *> \verbatim
33 *>
34 *> CCHKSY tests CSYTRF, -TRI2, -TRS, -TRS2, -RFS, and -CON.
35 *> \endverbatim
36 *
37 * Arguments:
38 * ==========
39 *
40 *> \param[in] DOTYPE
41 *> \verbatim
42 *> DOTYPE is LOGICAL array, dimension (NTYPES)
43 *> The matrix types to be used for testing. Matrices of type j
44 *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
45 *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
46 *> \endverbatim
47 *>
48 *> \param[in] NN
49 *> \verbatim
50 *> NN is INTEGER
51 *> The number of values of N contained in the vector NVAL.
52 *> \endverbatim
53 *>
54 *> \param[in] NVAL
55 *> \verbatim
56 *> NVAL is INTEGER array, dimension (NN)
57 *> The values of the matrix dimension N.
58 *> \endverbatim
59 *>
60 *> \param[in] NNB
61 *> \verbatim
62 *> NNB is INTEGER
63 *> The number of values of NB contained in the vector NBVAL.
64 *> \endverbatim
65 *>
66 *> \param[in] NBVAL
67 *> \verbatim
68 *> NBVAL is INTEGER array, dimension (NNB)
69 *> The values of the blocksize NB.
70 *> \endverbatim
71 *>
72 *> \param[in] NNS
73 *> \verbatim
74 *> NNS is INTEGER
75 *> The number of values of NRHS contained in the vector NSVAL.
76 *> \endverbatim
77 *>
78 *> \param[in] NSVAL
79 *> \verbatim
80 *> NSVAL is INTEGER array, dimension (NNS)
81 *> The values of the number of right hand sides NRHS.
82 *> \endverbatim
83 *>
84 *> \param[in] THRESH
85 *> \verbatim
86 *> THRESH is REAL
87 *> The threshold value for the test ratios. A result is
88 *> included in the output file if RESULT >= THRESH. To have
89 *> every test ratio printed, use THRESH = 0.
90 *> \endverbatim
91 *>
92 *> \param[in] TSTERR
93 *> \verbatim
94 *> TSTERR is LOGICAL
95 *> Flag that indicates whether error exits are to be tested.
96 *> \endverbatim
97 *>
98 *> \param[in] NMAX
99 *> \verbatim
100 *> NMAX is INTEGER
101 *> The maximum value permitted for N, used in dimensioning the
102 *> work arrays.
103 *> \endverbatim
104 *>
105 *> \param[out] A
106 *> \verbatim
107 *> A is COMPLEX array, dimension (NMAX*NMAX)
108 *> \endverbatim
109 *>
110 *> \param[out] AFAC
111 *> \verbatim
112 *> AFAC is COMPLEX array, dimension (NMAX*NMAX)
113 *> \endverbatim
114 *>
115 *> \param[out] AINV
116 *> \verbatim
117 *> AINV is COMPLEX array, dimension (NMAX*NMAX)
118 *> \endverbatim
119 *>
120 *> \param[out] B
121 *> \verbatim
122 *> B is COMPLEX array, dimension (NMAX*NSMAX)
123 *> where NSMAX is the largest entry in NSVAL.
124 *> \endverbatim
125 *>
126 *> \param[out] X
127 *> \verbatim
128 *> X is COMPLEX array, dimension (NMAX*NSMAX)
129 *> \endverbatim
130 *>
131 *> \param[out] XACT
132 *> \verbatim
133 *> XACT is COMPLEX array, dimension (NMAX*NSMAX)
134 *> \endverbatim
135 *>
136 *> \param[out] WORK
137 *> \verbatim
138 *> WORK is COMPLEX array, dimension (NMAX*max(2,NSMAX))
139 *> \endverbatim
140 *>
141 *> \param[out] RWORK
142 *> \verbatim
143 *> RWORK is REAL array, dimension (NMAX+2*NSMAX)
144 *> \endverbatim
145 *>
146 *> \param[out] IWORK
147 *> \verbatim
148 *> IWORK is INTEGER array, dimension (NMAX)
149 *> \endverbatim
150 *>
151 *> \param[in] NOUT
152 *> \verbatim
153 *> NOUT is INTEGER
154 *> The unit number for output.
155 *> \endverbatim
156 *
157 * Authors:
158 * ========
159 *
160 *> \author Univ. of Tennessee
161 *> \author Univ. of California Berkeley
162 *> \author Univ. of Colorado Denver
163 *> \author NAG Ltd.
164 *
165 *> \ingroup complex_lin
166 *
167 * =====================================================================
168  SUBROUTINE cchksy( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
169  $ THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X,
170  $ XACT, WORK, RWORK, IWORK, NOUT )
171 *
172 * -- LAPACK test routine --
173 * -- LAPACK is a software package provided by Univ. of Tennessee, --
174 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
175 *
176 * .. Scalar Arguments ..
177  LOGICAL TSTERR
178  INTEGER NMAX, NN, NNB, NNS, NOUT
179  REAL THRESH
180 * ..
181 * .. Array Arguments ..
182  LOGICAL DOTYPE( * )
183  INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
184  REAL RWORK( * )
185  COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ),
186  $ work( * ), x( * ), xact( * )
187 * ..
188 *
189 * =====================================================================
190 *
191 * .. Parameters ..
192  REAL ZERO
193  PARAMETER ( ZERO = 0.0e+0 )
194  COMPLEX CZERO
195  parameter( czero = ( 0.0e+0, 0.0e+0 ) )
196  INTEGER NTYPES
197  parameter( ntypes = 11 )
198  INTEGER NTESTS
199  parameter( ntests = 9 )
200 * ..
201 * .. Local Scalars ..
202  LOGICAL TRFCON, ZEROT
203  CHARACTER DIST, TYPE, UPLO, XTYPE
204  CHARACTER*3 PATH
205  INTEGER I, I1, I2, IMAT, IN, INB, INFO, IOFF, IRHS,
206  $ iuplo, izero, j, k, kl, ku, lda, lwork, mode,
207  $ n, nb, nerrs, nfail, nimat, nrhs, nrun, nt
208  REAL ANORM, CNDNUM, RCOND, RCONDC
209 * ..
210 * .. Local Arrays ..
211  CHARACTER UPLOS( 2 )
212  INTEGER ISEED( 4 ), ISEEDY( 4 )
213  REAL RESULT( NTESTS )
214 * ..
215 * .. External Functions ..
216  REAL SGET06, CLANSY
217  EXTERNAL SGET06, CLANSY
218 * ..
219 * .. External Subroutines ..
220  EXTERNAL alaerh, alahd, alasum, cerrsy, cget04, clacpy,
223  $ csytri2, csytrs, xlaenv
224 * ..
225 * .. Intrinsic Functions ..
226  INTRINSIC max, min
227 * ..
228 * .. Scalars in Common ..
229  LOGICAL LERR, OK
230  CHARACTER*32 SRNAMT
231  INTEGER INFOT, NUNIT
232 * ..
233 * .. Common blocks ..
234  COMMON / infoc / infot, nunit, ok, lerr
235  COMMON / srnamc / srnamt
236 * ..
237 * .. Data statements ..
238  DATA iseedy / 1988, 1989, 1990, 1991 /
239  DATA uplos / 'U', 'L' /
240 * ..
241 * .. Executable Statements ..
242 *
243 * Initialize constants and the random number seed.
244 *
245  path( 1: 1 ) = 'Complex precision'
246  path( 2: 3 ) = 'SY'
247  nrun = 0
248  nfail = 0
249  nerrs = 0
250  DO 10 i = 1, 4
251  iseed( i ) = iseedy( i )
252  10 CONTINUE
253 *
254 * Test the error exits
255 *
256  IF( tsterr )
257  $ CALL cerrsy( path, nout )
258  infot = 0
259 *
260 * Set the minimum block size for which the block routine should
261 * be used, which will be later returned by ILAENV
262 *
263  CALL xlaenv( 2, 2 )
264 *
265 * Do for each value of N in NVAL
266 *
267  DO 180 in = 1, nn
268  n = nval( in )
269  lda = max( n, 1 )
270  xtype = 'N'
271  nimat = ntypes
272  IF( n.LE.0 )
273  $ nimat = 1
274 *
275  izero = 0
276 *
277 * Do for each value of matrix type IMAT
278 *
279  DO 170 imat = 1, nimat
280 *
281 * Do the tests only if DOTYPE( IMAT ) is true.
282 *
283  IF( .NOT.dotype( imat ) )
284  $ GO TO 170
285 *
286 * Skip types 3, 4, 5, or 6 if the matrix size is too small.
287 *
288  zerot = imat.GE.3 .AND. imat.LE.6
289  IF( zerot .AND. n.LT.imat-2 )
290  $ GO TO 170
291 *
292 * Do first for UPLO = 'U', then for UPLO = 'L'
293 *
294  DO 160 iuplo = 1, 2
295  uplo = uplos( iuplo )
296 *
297 * Begin generate test matrix A.
298 *
299  IF( imat.NE.ntypes ) THEN
300 *
301 * Set up parameters with CLATB4 for the matrix generator
302 * based on the type of matrix to be generated.
303 *
304  CALL clatb4( path, imat, n, n, TYPE, kl, ku, anorm,
305  $ mode, cndnum, dist )
306 *
307 * Generate a matrix with CLATMS.
308 *
309  srnamt = 'CLATMS'
310  CALL clatms( n, n, dist, iseed, TYPE, rwork, mode,
311  $ cndnum, anorm, kl, ku, 'N', a, lda, work,
312  $ info )
313 *
314 * Check error code from CLATMS and handle error.
315 *
316  IF( info.NE.0 ) THEN
317  CALL alaerh( path, 'CLATMS', info, 0, uplo, n, n,
318  $ -1, -1, -1, imat, nfail, nerrs, nout )
319 *
320 * Skip all tests for this generated matrix
321 *
322  GO TO 160
323  END IF
324 *
325 * For matrix types 3-6, zero one or more rows and
326 * columns of the matrix to test that INFO is returned
327 * correctly.
328 *
329  IF( zerot ) THEN
330  IF( imat.EQ.3 ) THEN
331  izero = 1
332  ELSE IF( imat.EQ.4 ) THEN
333  izero = n
334  ELSE
335  izero = n / 2 + 1
336  END IF
337 *
338  IF( imat.LT.6 ) THEN
339 *
340 * Set row and column IZERO to zero.
341 *
342  IF( iuplo.EQ.1 ) THEN
343  ioff = ( izero-1 )*lda
344  DO 20 i = 1, izero - 1
345  a( ioff+i ) = czero
346  20 CONTINUE
347  ioff = ioff + izero
348  DO 30 i = izero, n
349  a( ioff ) = czero
350  ioff = ioff + lda
351  30 CONTINUE
352  ELSE
353  ioff = izero
354  DO 40 i = 1, izero - 1
355  a( ioff ) = czero
356  ioff = ioff + lda
357  40 CONTINUE
358  ioff = ioff - izero
359  DO 50 i = izero, n
360  a( ioff+i ) = czero
361  50 CONTINUE
362  END IF
363  ELSE
364  IF( iuplo.EQ.1 ) THEN
365 *
366 * Set the first IZERO rows to zero.
367 *
368  ioff = 0
369  DO 70 j = 1, n
370  i2 = min( j, izero )
371  DO 60 i = 1, i2
372  a( ioff+i ) = czero
373  60 CONTINUE
374  ioff = ioff + lda
375  70 CONTINUE
376  ELSE
377 *
378 * Set the last IZERO rows to zero.
379 *
380  ioff = 0
381  DO 90 j = 1, n
382  i1 = max( j, izero )
383  DO 80 i = i1, n
384  a( ioff+i ) = czero
385  80 CONTINUE
386  ioff = ioff + lda
387  90 CONTINUE
388  END IF
389  END IF
390  ELSE
391  izero = 0
392  END IF
393 *
394  ELSE
395 *
396 * For matrix kind IMAT = 11, generate special block
397 * diagonal matrix to test alternate code
398 * for the 2 x 2 blocks.
399 *
400  CALL clatsy( uplo, n, a, lda, iseed )
401 *
402  END IF
403 *
404 * End generate test matrix A.
405 *
406 *
407 * Do for each value of NB in NBVAL
408 *
409  DO 150 inb = 1, nnb
410 *
411 * Set the optimal blocksize, which will be later
412 * returned by ILAENV.
413 *
414  nb = nbval( inb )
415  CALL xlaenv( 1, nb )
416 *
417 * Copy the test matrix A into matrix AFAC which
418 * will be factorized in place. This is needed to
419 * preserve the test matrix A for subsequent tests.
420 *
421  CALL clacpy( uplo, n, n, a, lda, afac, lda )
422 *
423 * Compute the L*D*L**T or U*D*U**T factorization of the
424 * matrix. IWORK stores details of the interchanges and
425 * the block structure of D. AINV is a work array for
426 * block factorization, LWORK is the length of AINV.
427 *
428  lwork = max( 2, nb )*lda
429  srnamt = 'CSYTRF'
430  CALL csytrf( uplo, n, afac, lda, iwork, ainv, lwork,
431  $ info )
432 *
433 * Adjust the expected value of INFO to account for
434 * pivoting.
435 *
436  k = izero
437  IF( k.GT.0 ) THEN
438  100 CONTINUE
439  IF( iwork( k ).LT.0 ) THEN
440  IF( iwork( k ).NE.-k ) THEN
441  k = -iwork( k )
442  GO TO 100
443  END IF
444  ELSE IF( iwork( k ).NE.k ) THEN
445  k = iwork( k )
446  GO TO 100
447  END IF
448  END IF
449 *
450 * Check error code from CSYTRF and handle error.
451 *
452  IF( info.NE.k )
453  $ CALL alaerh( path, 'CSYTRF', info, k, uplo, n, n,
454  $ -1, -1, nb, imat, nfail, nerrs, nout )
455 *
456 * Set the condition estimate flag if the INFO is not 0.
457 *
458  IF( info.NE.0 ) THEN
459  trfcon = .true.
460  ELSE
461  trfcon = .false.
462  END IF
463 *
464 *+ TEST 1
465 * Reconstruct matrix from factors and compute residual.
466 *
467  CALL csyt01( uplo, n, a, lda, afac, lda, iwork, ainv,
468  $ lda, rwork, result( 1 ) )
469  nt = 1
470 *
471 *+ TEST 2
472 * Form the inverse and compute the residual,
473 * if the factorization was competed without INFO > 0
474 * (i.e. there is no zero rows and columns).
475 * Do it only for the first block size.
476 *
477  IF( inb.EQ.1 .AND. .NOT.trfcon ) THEN
478  CALL clacpy( uplo, n, n, afac, lda, ainv, lda )
479  srnamt = 'CSYTRI2'
480  lwork = (n+nb+1)*(nb+3)
481  CALL csytri2( uplo, n, ainv, lda, iwork, work,
482  $ lwork, info )
483 *
484 * Check error code from CSYTRI2 and handle error.
485 *
486  IF( info.NE.0 )
487  $ CALL alaerh( path, 'CSYTRI2', info, 0, uplo, n,
488  $ n, -1, -1, -1, imat, nfail, nerrs,
489  $ nout )
490 *
491 * Compute the residual for a symmetric matrix times
492 * its inverse.
493 *
494  CALL csyt03( uplo, n, a, lda, ainv, lda, work, lda,
495  $ rwork, rcondc, result( 2 ) )
496  nt = 2
497  END IF
498 *
499 * Print information about the tests that did not pass
500 * the threshold.
501 *
502  DO 110 k = 1, nt
503  IF( result( k ).GE.thresh ) THEN
504  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
505  $ CALL alahd( nout, path )
506  WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
507  $ result( k )
508  nfail = nfail + 1
509  END IF
510  110 CONTINUE
511  nrun = nrun + nt
512 *
513 * Skip the other tests if this is not the first block
514 * size.
515 *
516  IF( inb.GT.1 )
517  $ GO TO 150
518 *
519 * Do only the condition estimate if INFO is not 0.
520 *
521  IF( trfcon ) THEN
522  rcondc = zero
523  GO TO 140
524  END IF
525 *
526 * Do for each value of NRHS in NSVAL.
527 *
528  DO 130 irhs = 1, nns
529  nrhs = nsval( irhs )
530 *
531 *+ TEST 3 (Using TRS)
532 * Solve and compute residual for A * X = B.
533 *
534 * Choose a set of NRHS random solution vectors
535 * stored in XACT and set up the right hand side B
536 *
537  srnamt = 'CLARHS'
538  CALL clarhs( path, xtype, uplo, ' ', n, n, kl, ku,
539  $ nrhs, a, lda, xact, lda, b, lda,
540  $ iseed, info )
541  CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
542 *
543  srnamt = 'CSYTRS'
544  CALL csytrs( uplo, n, nrhs, afac, lda, iwork, x,
545  $ lda, info )
546 *
547 * Check error code from CSYTRS and handle error.
548 *
549  IF( info.NE.0 )
550  $ CALL alaerh( path, 'CSYTRS', info, 0, uplo, n,
551  $ n, -1, -1, nrhs, imat, nfail,
552  $ nerrs, nout )
553 *
554  CALL clacpy( 'Full', n, nrhs, b, lda, work, lda )
555 *
556 * Compute the residual for the solution
557 *
558  CALL csyt02( uplo, n, nrhs, a, lda, x, lda, work,
559  $ lda, rwork, result( 3 ) )
560 *
561 *+ TEST 4 (Using TRS2)
562 * Solve and compute residual for A * X = B.
563 *
564 * Choose a set of NRHS random solution vectors
565 * stored in XACT and set up the right hand side B
566 *
567  srnamt = 'CLARHS'
568  CALL clarhs( path, xtype, uplo, ' ', n, n, kl, ku,
569  $ nrhs, a, lda, xact, lda, b, lda,
570  $ iseed, info )
571  CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
572 *
573  srnamt = 'CSYTRS2'
574  CALL csytrs2( uplo, n, nrhs, afac, lda, iwork, x,
575  $ lda, work, info )
576 *
577 * Check error code from CSYTRS2 and handle error.
578 *
579  IF( info.NE.0 )
580  $ CALL alaerh( path, 'CSYTRS2', info, 0, uplo, n,
581  $ n, -1, -1, nrhs, imat, nfail,
582  $ nerrs, nout )
583 *
584  CALL clacpy( 'Full', n, nrhs, b, lda, work, lda )
585 *
586 * Compute the residual for the solution
587 *
588  CALL csyt02( uplo, n, nrhs, a, lda, x, lda, work,
589  $ lda, rwork, result( 4 ) )
590 *
591 *+ TEST 5
592 * Check solution from generated exact solution.
593 *
594  CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
595  $ result( 5 ) )
596 *
597 *+ TESTS 6, 7, and 8
598 * Use iterative refinement to improve the solution.
599 *
600  srnamt = 'CSYRFS'
601  CALL csyrfs( uplo, n, nrhs, a, lda, afac, lda,
602  $ iwork, b, lda, x, lda, rwork,
603  $ rwork( nrhs+1 ), work,
604  $ rwork( 2*nrhs+1 ), info )
605 *
606 * Check error code from CSYRFS and handle error.
607 *
608  IF( info.NE.0 )
609  $ CALL alaerh( path, 'CSYRFS', info, 0, uplo, n,
610  $ n, -1, -1, nrhs, imat, nfail,
611  $ nerrs, nout )
612 *
613  CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
614  $ result( 6 ) )
615  CALL cpot05( uplo, n, nrhs, a, lda, b, lda, x, lda,
616  $ xact, lda, rwork, rwork( nrhs+1 ),
617  $ result( 7 ) )
618 *
619 * Print information about the tests that did not pass
620 * the threshold.
621 *
622  DO 120 k = 3, 8
623  IF( result( k ).GE.thresh ) THEN
624  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
625  $ CALL alahd( nout, path )
626  WRITE( nout, fmt = 9998 )uplo, n, nrhs,
627  $ imat, k, result( k )
628  nfail = nfail + 1
629  END IF
630  120 CONTINUE
631  nrun = nrun + 6
632 *
633 * End do for each value of NRHS in NSVAL.
634 *
635  130 CONTINUE
636 *
637 *+ TEST 9
638 * Get an estimate of RCOND = 1/CNDNUM.
639 *
640  140 CONTINUE
641  anorm = clansy( '1', uplo, n, a, lda, rwork )
642  srnamt = 'CSYCON'
643  CALL csycon( uplo, n, afac, lda, iwork, anorm, rcond,
644  $ work, info )
645 *
646 * Check error code from CSYCON and handle error.
647 *
648  IF( info.NE.0 )
649  $ CALL alaerh( path, 'CSYCON', info, 0, uplo, n, n,
650  $ -1, -1, -1, imat, nfail, nerrs, nout )
651 *
652 * Compute the test ratio to compare values of RCOND
653 *
654  result( 9 ) = sget06( rcond, rcondc )
655 *
656 * Print information about the tests that did not pass
657 * the threshold.
658 *
659  IF( result( 9 ).GE.thresh ) THEN
660  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
661  $ CALL alahd( nout, path )
662  WRITE( nout, fmt = 9997 )uplo, n, imat, 9,
663  $ result( 9 )
664  nfail = nfail + 1
665  END IF
666  nrun = nrun + 1
667  150 CONTINUE
668  160 CONTINUE
669  170 CONTINUE
670  180 CONTINUE
671 *
672 * Print a summary of the results.
673 *
674  CALL alasum( path, nout, nfail, nrun, nerrs )
675 *
676  9999 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NB =', i4, ', type ',
677  $ i2, ', test ', i2, ', ratio =', g12.5 )
678  9998 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NRHS=', i3, ', type ',
679  $ i2, ', test(', i2, ') =', g12.5 )
680  9997 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ',', 10x, ' type ', i2,
681  $ ', test(', i2, ') =', g12.5 )
682  RETURN
683 *
684 * End of CCHKSY
685 *
686  END
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:73
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:81
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:107
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:147
subroutine clarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
CLARHS
Definition: clarhs.f:208
subroutine cpot05(UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS)
CPOT05
Definition: cpot05.f:165
subroutine clatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
CLATB4
Definition: clatb4.f:121
subroutine cget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
CGET04
Definition: cget04.f:102
subroutine csyt01(UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC, RWORK, RESID)
CSYT01
Definition: csyt01.f:125
subroutine cchksy(DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL, THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK, NOUT)
CCHKSY
Definition: cchksy.f:171
subroutine cerrsy(PATH, NUNIT)
CERRSY
Definition: cerrsy.f:55
subroutine csyt02(UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
CSYT02
Definition: csyt02.f:127
subroutine csyt03(UPLO, N, A, LDA, AINV, LDAINV, WORK, LDWORK, RWORK, RCOND, RESID)
CSYT03
Definition: csyt03.f:126
subroutine clatsy(UPLO, N, X, LDX, ISEED)
CLATSY
Definition: clatsy.f:89
subroutine clatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
CLATMS
Definition: clatms.f:332
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:103
subroutine csyrfs(UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO)
CSYRFS
Definition: csyrfs.f:192
subroutine csytri2(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
CSYTRI2
Definition: csytri2.f:127
subroutine csycon(UPLO, N, A, LDA, IPIV, ANORM, RCOND, WORK, INFO)
CSYCON
Definition: csycon.f:125
subroutine csytrs2(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, INFO)
CSYTRS2
Definition: csytrs2.f:132
subroutine csytrs(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
CSYTRS
Definition: csytrs.f:120
subroutine csytrf(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
CSYTRF
Definition: csytrf.f:182