LAPACK
3.4.2
LAPACK: Linear Algebra PACKage

Go to the source code of this file.
Functions/Subroutines  
subroutine  dsprfs (UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO) 
DSPRFS 
subroutine dsprfs  (  character  UPLO, 
integer  N,  
integer  NRHS,  
double precision, dimension( * )  AP,  
double precision, dimension( * )  AFP,  
integer, dimension( * )  IPIV,  
double precision, dimension( ldb, * )  B,  
integer  LDB,  
double precision, dimension( ldx, * )  X,  
integer  LDX,  
double precision, dimension( * )  FERR,  
double precision, dimension( * )  BERR,  
double precision, dimension( * )  WORK,  
integer, dimension( * )  IWORK,  
integer  INFO  
) 
DSPRFS
Download DSPRFS + dependencies [TGZ] [ZIP] [TXT]DSPRFS improves the computed solution to a system of linear equations when the coefficient matrix is symmetric indefinite and packed, and provides error bounds and backward error estimates for the solution.
[in]  UPLO  UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. 
[in]  N  N is INTEGER The order of the matrix A. N >= 0. 
[in]  NRHS  NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0. 
[in]  AP  AP is DOUBLE PRECISION array, dimension (N*(N+1)/2) The upper or lower triangle of the symmetric matrix A, packed columnwise in a linear array. The jth column of A is stored in the array AP as follows: if UPLO = 'U', AP(i + (j1)*j/2) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP(i + (j1)*(2*nj)/2) = A(i,j) for j<=i<=n. 
[in]  AFP  AFP is DOUBLE PRECISION array, dimension (N*(N+1)/2) The factored form of the matrix A. AFP contains the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization A = U*D*U**T or A = L*D*L**T as computed by DSPTRF, stored as a packed triangular matrix. 
[in]  IPIV  IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by DSPTRF. 
[in]  B  B is DOUBLE PRECISION array, dimension (LDB,NRHS) The right hand side matrix B. 
[in]  LDB  LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). 
[in,out]  X  X is DOUBLE PRECISION array, dimension (LDX,NRHS) On entry, the solution matrix X, as computed by DSPTRS. On exit, the improved solution matrix X. 
[in]  LDX  LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N). 
[out]  FERR  FERR is DOUBLE PRECISION array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the jth column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j)  XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error. 
[out]  BERR  BERR is DOUBLE PRECISION array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution). 
[out]  WORK  WORK is DOUBLE PRECISION array, dimension (3*N) 
[out]  IWORK  IWORK is INTEGER array, dimension (N) 
[out]  INFO  INFO is INTEGER = 0: successful exit < 0: if INFO = i, the ith argument had an illegal value 
ITMAX is the maximum number of steps of iterative refinement.
Definition at line 179 of file dsprfs.f.