LAPACK
3.4.2
LAPACK: Linear Algebra PACKage

Go to the source code of this file.
Functions/Subroutines  
subroutine  claqr4 (WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ, IHIZ, Z, LDZ, WORK, LWORK, INFO) 
CLAQR4 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Schur decomposition. 
subroutine claqr4  (  logical  WANTT, 
logical  WANTZ,  
integer  N,  
integer  ILO,  
integer  IHI,  
complex, dimension( ldh, * )  H,  
integer  LDH,  
complex, dimension( * )  W,  
integer  ILOZ,  
integer  IHIZ,  
complex, dimension( ldz, * )  Z,  
integer  LDZ,  
complex, dimension( * )  WORK,  
integer  LWORK,  
integer  INFO  
) 
CLAQR4 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Schur decomposition.
Download CLAQR4 + dependencies [TGZ] [ZIP] [TXT]CLAQR4 implements one level of recursion for CLAQR0. It is a complete implementation of the small bulge multishift QR algorithm. It may be called by CLAQR0 and, for large enough deflation window size, it may be called by CLAQR3. This subroutine is identical to CLAQR0 except that it calls CLAQR2 instead of CLAQR3. CLAQR4 computes the eigenvalues of a Hessenberg matrix H and, optionally, the matrices T and Z from the Schur decomposition H = Z T Z**H, where T is an upper triangular matrix (the Schur form), and Z is the unitary matrix of Schur vectors. Optionally Z may be postmultiplied into an input unitary matrix Q so that this routine can give the Schur factorization of a matrix A which has been reduced to the Hessenberg form H by the unitary matrix Q: A = Q*H*Q**H = (QZ)*H*(QZ)**H.
[in]  WANTT  WANTT is LOGICAL = .TRUE. : the full Schur form T is required; = .FALSE.: only eigenvalues are required. 
[in]  WANTZ  WANTZ is LOGICAL = .TRUE. : the matrix of Schur vectors Z is required; = .FALSE.: Schur vectors are not required. 
[in]  N  N is INTEGER The order of the matrix H. N .GE. 0. 
[in]  ILO  ILO is INTEGER 
[in]  IHI  IHI is INTEGER It is assumed that H is already upper triangular in rows and columns 1:ILO1 and IHI+1:N and, if ILO.GT.1, H(ILO,ILO1) is zero. ILO and IHI are normally set by a previous call to CGEBAL, and then passed to CGEHRD when the matrix output by CGEBAL is reduced to Hessenberg form. Otherwise, ILO and IHI should be set to 1 and N, respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N. If N = 0, then ILO = 1 and IHI = 0. 
[in,out]  H  H is COMPLEX array, dimension (LDH,N) On entry, the upper Hessenberg matrix H. On exit, if INFO = 0 and WANTT is .TRUE., then H contains the upper triangular matrix T from the Schur decomposition (the Schur form). If INFO = 0 and WANT is .FALSE., then the contents of H are unspecified on exit. (The output value of H when INFO.GT.0 is given under the description of INFO below.) This subroutine may explicitly set H(i,j) = 0 for i.GT.j and j = 1, 2, ... ILO1 or j = IHI+1, IHI+2, ... N. 
[in]  LDH  LDH is INTEGER The leading dimension of the array H. LDH .GE. max(1,N). 
[out]  W  W is COMPLEX array, dimension (N) The computed eigenvalues of H(ILO:IHI,ILO:IHI) are stored in W(ILO:IHI). If WANTT is .TRUE., then the eigenvalues are stored in the same order as on the diagonal of the Schur form returned in H, with W(i) = H(i,i). 
[in]  ILOZ  ILOZ is INTEGER 
[in]  IHIZ  IHIZ is INTEGER Specify the rows of Z to which transformations must be applied if WANTZ is .TRUE.. 1 .LE. ILOZ .LE. ILO; IHI .LE. IHIZ .LE. N. 
[in,out]  Z  Z is COMPLEX array, dimension (LDZ,IHI) If WANTZ is .FALSE., then Z is not referenced. If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the orthogonal Schur factor of H(ILO:IHI,ILO:IHI). (The output value of Z when INFO.GT.0 is given under the description of INFO below.) 
[in]  LDZ  LDZ is INTEGER The leading dimension of the array Z. if WANTZ is .TRUE. then LDZ.GE.MAX(1,IHIZ). Otherwize, LDZ.GE.1. 
[out]  WORK  WORK is COMPLEX array, dimension LWORK On exit, if LWORK = 1, WORK(1) returns an estimate of the optimal value for LWORK. 
[in]  LWORK  LWORK is INTEGER The dimension of the array WORK. LWORK .GE. max(1,N) is sufficient, but LWORK typically as large as 6*N may be required for optimal performance. A workspace query to determine the optimal workspace size is recommended. If LWORK = 1, then CLAQR4 does a workspace query. In this case, CLAQR4 checks the input parameters and estimates the optimal workspace size for the given values of N, ILO and IHI. The estimate is returned in WORK(1). No error message related to LWORK is issued by XERBLA. Neither H nor Z are accessed. 
[out]  INFO  \verbatim INFO is INTEGER = 0: successful exit .GT. 0: if INFO = i, CLAQR4 failed to compute all of the eigenvalues. Elements 1:ilo1 and i+1:n of WR and WI contain those eigenvalues which have been successfully computed. (Failures are rare.) If INFO .GT. 0 and WANT is .FALSE., then on exit, the remaining unconverged eigenvalues are the eigen values of the upper Hessenberg matrix rows and columns ILO through INFO of the final, output value of H. If INFO .GT. 0 and WANTT is .TRUE., then on exit (*) (initial value of H)*U = U*(final value of H) where U is a unitary matrix. The final value of H is upper Hessenberg and triangular in rows and columns INFO+1 through IHI. If INFO .GT. 0 and WANTZ is .TRUE., then on exit (final value of Z(ILO:IHI,ILOZ:IHIZ) = (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U where U is the unitary matrix in (*) (regard less of the value of WANTT.) If INFO .GT. 0 and WANTZ is .FALSE., then Z is not accessed. 
Definition at line 249 of file claqr4.f.