LAPACK
3.4.2
LAPACK: Linear Algebra PACKage

Go to the source code of this file.
Functions/Subroutines  
subroutine  zhbgvd (JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z, LDZ, WORK, LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO) 
ZHBGST 
subroutine zhbgvd  (  character  JOBZ, 
character  UPLO,  
integer  N,  
integer  KA,  
integer  KB,  
complex*16, dimension( ldab, * )  AB,  
integer  LDAB,  
complex*16, dimension( ldbb, * )  BB,  
integer  LDBB,  
double precision, dimension( * )  W,  
complex*16, dimension( ldz, * )  Z,  
integer  LDZ,  
complex*16, dimension( * )  WORK,  
integer  LWORK,  
double precision, dimension( * )  RWORK,  
integer  LRWORK,  
integer, dimension( * )  IWORK,  
integer  LIWORK,  
integer  INFO  
) 
ZHBGST
Download ZHBGVD + dependencies [TGZ] [ZIP] [TXT]ZHBGVD computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitiandefinite banded eigenproblem, of the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian and banded, and B is also positive definite. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray XMP, Cray YMP, Cray C90, or Cray2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.
[in]  JOBZ  JOBZ is CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors. 
[in]  UPLO  UPLO is CHARACTER*1 = 'U': Upper triangles of A and B are stored; = 'L': Lower triangles of A and B are stored. 
[in]  N  N is INTEGER The order of the matrices A and B. N >= 0. 
[in]  KA  KA is INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KA >= 0. 
[in]  KB  KB is INTEGER The number of superdiagonals of the matrix B if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KB >= 0. 
[in,out]  AB  AB is COMPLEX*16 array, dimension (LDAB, N) On entry, the upper or lower triangle of the Hermitian band matrix A, stored in the first ka+1 rows of the array. The jth column of A is stored in the jth column of the array AB as follows: if UPLO = 'U', AB(ka+1+ij,j) = A(i,j) for max(1,jka)<=i<=j; if UPLO = 'L', AB(1+ij,j) = A(i,j) for j<=i<=min(n,j+ka). On exit, the contents of AB are destroyed. 
[in]  LDAB  LDAB is INTEGER The leading dimension of the array AB. LDAB >= KA+1. 
[in,out]  BB  BB is COMPLEX*16 array, dimension (LDBB, N) On entry, the upper or lower triangle of the Hermitian band matrix B, stored in the first kb+1 rows of the array. The jth column of B is stored in the jth column of the array BB as follows: if UPLO = 'U', BB(kb+1+ij,j) = B(i,j) for max(1,jkb)<=i<=j; if UPLO = 'L', BB(1+ij,j) = B(i,j) for j<=i<=min(n,j+kb). On exit, the factor S from the split Cholesky factorization B = S**H*S, as returned by ZPBSTF. 
[in]  LDBB  LDBB is INTEGER The leading dimension of the array BB. LDBB >= KB+1. 
[out]  W  W is DOUBLE PRECISION array, dimension (N) If INFO = 0, the eigenvalues in ascending order. 
[out]  Z  Z is COMPLEX*16 array, dimension (LDZ, N) If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of eigenvectors, with the ith column of Z holding the eigenvector associated with W(i). The eigenvectors are normalized so that Z**H*B*Z = I. If JOBZ = 'N', then Z is not referenced. 
[in]  LDZ  LDZ is INTEGER The leading dimension of the array Z. LDZ >= 1, and if JOBZ = 'V', LDZ >= N. 
[out]  WORK  WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) On exit, if INFO=0, WORK(1) returns the optimal LWORK. 
[in]  LWORK  LWORK is INTEGER The dimension of the array WORK. If N <= 1, LWORK >= 1. If JOBZ = 'N' and N > 1, LWORK >= N. If JOBZ = 'V' and N > 1, LWORK >= 2*N**2. If LWORK = 1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA. 
[out]  RWORK  RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK)) On exit, if INFO=0, RWORK(1) returns the optimal LRWORK. 
[in]  LRWORK  LRWORK is INTEGER The dimension of array RWORK. If N <= 1, LRWORK >= 1. If JOBZ = 'N' and N > 1, LRWORK >= N. If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2. If LRWORK = 1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA. 
[out]  IWORK  IWORK is INTEGER array, dimension (MAX(1,LIWORK)) On exit, if INFO=0, IWORK(1) returns the optimal LIWORK. 
[in]  LIWORK  LIWORK is INTEGER The dimension of array IWORK. If JOBZ = 'N' or N <= 1, LIWORK >= 1. If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N. If LIWORK = 1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK, RWORK and IWORK arrays, returns these values as the first entries of the WORK, RWORK and IWORK arrays, and no error message related to LWORK or LRWORK or LIWORK is issued by XERBLA. 
[out]  INFO  INFO is INTEGER = 0: successful exit < 0: if INFO = i, the ith argument had an illegal value > 0: if INFO = i, and i is: <= N: the algorithm failed to converge: i offdiagonal elements of an intermediate tridiagonal form did not converge to zero; > N: if INFO = N + i, for 1 <= i <= N, then ZPBSTF returned INFO = i: B is not positive definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed. 
Definition at line 251 of file zhbgvd.f.