SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
pzggqrf.f
Go to the documentation of this file.
1 SUBROUTINE pzggqrf( N, M, P, A, IA, JA, DESCA, TAUA, B, IB, JB,
2 $ DESCB, TAUB, WORK, LWORK, INFO )
3*
4* -- ScaLAPACK routine (version 1.7) --
5* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
6* and University of California, Berkeley.
7* May 1, 1997
8*
9* .. Scalar Arguments ..
10 INTEGER IA, IB, INFO, JA, JB, LWORK, M, N, P
11* ..
12* .. Array Arguments ..
13 INTEGER DESCA( * ), DESCB( * )
14 COMPLEX*16 A( * ), B( * ), TAUA( * ), TAUB( * ), WORK( * )
15* ..
16*
17* Purpose
18* =======
19*
20* PZGGQRF computes a generalized QR factorization of
21* an N-by-M matrix sub( A ) = A(IA:IA+N-1,JA:JA+M-1) and
22* an N-by-P matrix sub( B ) = B(IB:IB+N-1,JB:JB+P-1):
23*
24* sub( A ) = Q*R, sub( B ) = Q*T*Z,
25*
26* where Q is an N-by-N unitary matrix, Z is a P-by-P unitary matrix,
27* and R and T assume one of the forms:
28*
29* if N >= M, R = ( R11 ) M , or if N < M, R = ( R11 R12 ) N,
30* ( 0 ) N-M N M-N
31* M
32*
33* where R11 is upper triangular, and
34*
35* if N <= P, T = ( 0 T12 ) N, or if N > P, T = ( T11 ) N-P,
36* P-N N ( T21 ) P
37* P
38*
39* where T12 or T21 is upper triangular.
40*
41* In particular, if sub( B ) is square and nonsingular, the GQR
42* factorization of sub( A ) and sub( B ) implicitly gives the QR
43* factorization of inv( sub( B ) )* sub( A ):
44*
45* inv( sub( B ) )*sub( A )= Z'*(inv(T)*R)
46*
47* where inv( sub( B ) ) denotes the inverse of the matrix sub( B ),
48* and Z' denotes the conjugate transpose of matrix Z.
49*
50* Notes
51* =====
52*
53* Each global data object is described by an associated description
54* vector. This vector stores the information required to establish
55* the mapping between an object element and its corresponding process
56* and memory location.
57*
58* Let A be a generic term for any 2D block cyclicly distributed array.
59* Such a global array has an associated description vector DESCA.
60* In the following comments, the character _ should be read as
61* "of the global array".
62*
63* NOTATION STORED IN EXPLANATION
64* --------------- -------------- --------------------------------------
65* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
66* DTYPE_A = 1.
67* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
68* the BLACS process grid A is distribu-
69* ted over. The context itself is glo-
70* bal, but the handle (the integer
71* value) may vary.
72* M_A (global) DESCA( M_ ) The number of rows in the global
73* array A.
74* N_A (global) DESCA( N_ ) The number of columns in the global
75* array A.
76* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
77* the rows of the array.
78* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
79* the columns of the array.
80* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
81* row of the array A is distributed.
82* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
83* first column of the array A is
84* distributed.
85* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
86* array. LLD_A >= MAX(1,LOCr(M_A)).
87*
88* Let K be the number of rows or columns of a distributed matrix,
89* and assume that its process grid has dimension p x q.
90* LOCr( K ) denotes the number of elements of K that a process
91* would receive if K were distributed over the p processes of its
92* process column.
93* Similarly, LOCc( K ) denotes the number of elements of K that a
94* process would receive if K were distributed over the q processes of
95* its process row.
96* The values of LOCr() and LOCc() may be determined via a call to the
97* ScaLAPACK tool function, NUMROC:
98* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
99* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
100* An upper bound for these quantities may be computed by:
101* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
102* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
103*
104* Arguments
105* =========
106*
107* N (global input) INTEGER
108* The number of rows to be operated on i.e the number of rows
109* of the distributed submatrices sub( A ) and sub( B ). N >= 0.
110*
111* M (global input) INTEGER
112* The number of columns to be operated on i.e the number of
113* columns of the distributed submatrix sub( A ). M >= 0.
114*
115* P (global input) INTEGER
116* The number of columns to be operated on i.e the number of
117* columns of the distributed submatrix sub( B ). P >= 0.
118*
119* A (local input/local output) COMPLEX*16 pointer into the
120* local memory to an array of dimension (LLD_A, LOCc(JA+M-1)).
121* On entry, the local pieces of the N-by-M distributed matrix
122* sub( A ) which is to be factored. On exit, the elements on
123* and above the diagonal of sub( A ) contain the min(N,M) by M
124* upper trapezoidal matrix R (R is upper triangular if N >= M);
125* the elements below the diagonal, with the array TAUA,
126* represent the unitary matrix Q as a product of min(N,M)
127* elementary reflectors (see Further Details).
128*
129* IA (global input) INTEGER
130* The row index in the global array A indicating the first
131* row of sub( A ).
132*
133* JA (global input) INTEGER
134* The column index in the global array A indicating the
135* first column of sub( A ).
136*
137* DESCA (global and local input) INTEGER array of dimension DLEN_.
138* The array descriptor for the distributed matrix A.
139*
140* TAUA (local output) COMPLEX*16, array, dimension
141* LOCc(JA+MIN(N,M)-1). This array contains the scalar factors
142* TAUA of the elementary reflectors which represent the unitary
143* matrix Q. TAUA is tied to the distributed matrix A. (see
144* Further Details).
145*
146* B (local input/local output) COMPLEX*16 pointer into the
147* local memory to an array of dimension (LLD_B, LOCc(JB+P-1)).
148* On entry, the local pieces of the N-by-P distributed matrix
149* sub( B ) which is to be factored. On exit, if N <= P, the
150* upper triangle of B(IB:IB+N-1,JB+P-N:JB+P-1) contains the
151* N by N upper triangular matrix T; if N > P, the elements on
152* and above the (N-P)-th subdiagonal contain the N by P upper
153* trapezoidal matrix T; the remaining elements, with the array
154* TAUB, represent the unitary matrix Z as a product of
155* elementary reflectors (see Further Details).
156*
157* IB (global input) INTEGER
158* The row index in the global array B indicating the first
159* row of sub( B ).
160*
161* JB (global input) INTEGER
162* The column index in the global array B indicating the
163* first column of sub( B ).
164*
165* DESCB (global and local input) INTEGER array of dimension DLEN_.
166* The array descriptor for the distributed matrix B.
167*
168* TAUB (local output) COMPLEX*16, array, dimension LOCr(IB+N-1)
169* This array contains the scalar factors of the elementary
170* reflectors which represent the unitary matrix Z. TAUB is
171* tied to the distributed matrix B (see Further Details).
172*
173* WORK (local workspace/local output) COMPLEX*16 array,
174* dimension (LWORK)
175* On exit, WORK(1) returns the minimal and optimal LWORK.
176*
177* LWORK (local or global input) INTEGER
178* The dimension of the array WORK.
179* LWORK is local input and must be at least
180* LWORK >= MAX( NB_A * ( NpA0 + MqA0 + NB_A ),
181* MAX( (NB_A*(NB_A-1))/2, (PqB0 + NpB0)*NB_A ) +
182* NB_A * NB_A,
183* MB_B * ( NpB0 + PqB0 + MB_B ) ), where
184*
185* IROFFA = MOD( IA-1, MB_A ), ICOFFA = MOD( JA-1, NB_A ),
186* IAROW = INDXG2P( IA, MB_A, MYROW, RSRC_A, NPROW ),
187* IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL ),
188* NpA0 = NUMROC( N+IROFFA, MB_A, MYROW, IAROW, NPROW ),
189* MqA0 = NUMROC( M+ICOFFA, NB_A, MYCOL, IACOL, NPCOL ),
190*
191* IROFFB = MOD( IB-1, MB_B ), ICOFFB = MOD( JB-1, NB_B ),
192* IBROW = INDXG2P( IB, MB_B, MYROW, RSRC_B, NPROW ),
193* IBCOL = INDXG2P( JB, NB_B, MYCOL, CSRC_B, NPCOL ),
194* NpB0 = NUMROC( N+IROFFB, MB_B, MYROW, IBROW, NPROW ),
195* PqB0 = NUMROC( P+ICOFFB, NB_B, MYCOL, IBCOL, NPCOL ),
196*
197* and NUMROC, INDXG2P are ScaLAPACK tool functions;
198* MYROW, MYCOL, NPROW and NPCOL can be determined by calling
199* the subroutine BLACS_GRIDINFO.
200*
201* If LWORK = -1, then LWORK is global input and a workspace
202* query is assumed; the routine only calculates the minimum
203* and optimal size for all work arrays. Each of these
204* values is returned in the first entry of the corresponding
205* work array, and no error message is issued by PXERBLA.
206*
207* INFO (global output) INTEGER
208* = 0: successful exit
209* < 0: If the i-th argument is an array and the j-entry had
210* an illegal value, then INFO = -(i*100+j), if the i-th
211* argument is a scalar and had an illegal value, then
212* INFO = -i.
213*
214* Further Details
215* ===============
216*
217* The matrix Q is represented as a product of elementary reflectors
218*
219* Q = H(ja) H(ja+1) . . . H(ja+k-1), where k = min(n,m).
220*
221* Each H(i) has the form
222*
223* H(i) = I - taua * v * v'
224*
225* where taua is a complex scalar, and v is a complex vector with
226* v(1:i-1) = 0 and v(i) = 1; v(i+1:n) is stored on exit in
227* A(ia+i:ia+n-1,ja+i-1), and taua in TAUA(ja+i-1).
228* To form Q explicitly, use ScaLAPACK subroutine PZUNGQR.
229* To use Q to update another matrix, use ScaLAPACK subroutine PZUNMQR.
230*
231* The matrix Z is represented as a product of elementary reflectors
232*
233* Z = H(ib)' H(ib+1)' . . . H(ib+k-1)', where k = min(n,p).
234*
235* Each H(i) has the form
236*
237* H(i) = I - taub * v * v'
238*
239* where taub is a complex scalar, and v is a complex vector with
240* v(p-k+i+1:p) = 0 and v(p-k+i) = 1; conjg(v(1:p-k+i-1)) is stored on
241* exit in B(ib+n-k+i-1,jb:jb+p-k+i-2), and taub in TAUB(ib+n-k+i-1).
242* To form Z explicitly, use ScaLAPACK subroutine PZUNGRQ.
243* To use Z to update another matrix, use ScaLAPACK subroutine PZUNMRQ.
244*
245* Alignment requirements
246* ======================
247*
248* The distributed submatrices sub( A ) and sub( B ) must verify some
249* alignment properties, namely the following expression should be true:
250*
251* ( MB_A.EQ.MB_B .AND. IROFFA.EQ.IROFFB .AND. IAROW.EQ.IBROW )
252*
253* =====================================================================
254*
255* .. Parameters ..
256 INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
257 $ lld_, mb_, m_, nb_, n_, rsrc_
258 parameter( block_cyclic_2d = 1, dlen_ = 9, dtype_ = 1,
259 $ ctxt_ = 2, m_ = 3, n_ = 4, mb_ = 5, nb_ = 6,
260 $ rsrc_ = 7, csrc_ = 8, lld_ = 9 )
261* ..
262* .. Local Scalars ..
263 LOGICAL LQUERY
264 INTEGER IACOL, IAROW, IBCOL, IBROW, ICOFFA, ICOFFB,
265 $ ictxt, iroffa, iroffb, lwmin, mqa0, mycol,
266 $ myrow, npa0, npb0, npcol, nprow, pqb0
267* ..
268* .. External Subroutines ..
269 EXTERNAL blacs_gridinfo, chk1mat, pchk2mat, pxerbla,
271* ..
272* .. Local Arrays ..
273 INTEGER IDUM1( 1 ), IDUM2( 1 )
274* ..
275* .. External Functions ..
276 INTEGER INDXG2P, NUMROC
277 EXTERNAL indxg2p, numroc
278* ..
279* .. Intrinsic Functions ..
280 INTRINSIC dble, dcmplx, int, max, min, mod
281* ..
282* .. Executable Statements ..
283*
284* Get grid parameters
285*
286 ictxt = desca( ctxt_ )
287 CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
288*
289* Test the input parameters
290*
291 info = 0
292 IF( nprow.EQ.-1 ) THEN
293 info = -707
294 ELSE
295 CALL chk1mat( n, 1, m, 2, ia, ja, desca, 7, info )
296 CALL chk1mat( n, 1, p, 3, ib, jb, descb, 12, info )
297 IF( info.EQ.0 ) THEN
298 iroffa = mod( ia-1, desca( mb_ ) )
299 icoffa = mod( ja-1, desca( nb_ ) )
300 iroffb = mod( ib-1, descb( mb_ ) )
301 icoffb = mod( jb-1, descb( nb_ ) )
302 iarow = indxg2p( ia, desca( mb_ ), myrow, desca( rsrc_ ),
303 $ nprow )
304 iacol = indxg2p( ja, desca( nb_ ), mycol, desca( csrc_ ),
305 $ npcol )
306 ibrow = indxg2p( ib, descb( mb_ ), myrow, descb( rsrc_ ),
307 $ nprow )
308 ibcol = indxg2p( jb, descb( nb_ ), mycol, descb( csrc_ ),
309 $ npcol )
310 npa0 = numroc( n+iroffa, desca( mb_ ), myrow, iarow, nprow )
311 mqa0 = numroc( m+icoffa, desca( nb_ ), mycol, iacol, npcol )
312 npb0 = numroc( n+iroffb, descb( mb_ ), myrow, ibrow, nprow )
313 pqb0 = numroc( p+icoffb, descb( nb_ ), mycol, ibcol, npcol )
314 lwmin = max( desca( nb_ ) * ( npa0 + mqa0 + desca( nb_ ) ),
315 $ max( max( ( desca( nb_ )*( desca( nb_ ) - 1 ) ) / 2,
316 $ ( pqb0 + npb0 ) * desca( nb_ ) ) +
317 $ desca( nb_ ) * desca( nb_ ),
318 $ descb( mb_ ) * ( npb0 + pqb0 + descb( mb_ ) ) ) )
319*
320 work( 1 ) = dcmplx( dble( lwmin ) )
321 lquery = ( lwork.EQ.-1 )
322 IF( iarow.NE.ibrow .OR. iroffa.NE.iroffb ) THEN
323 info = -10
324 ELSE IF( desca( mb_ ).NE.descb( mb_ ) ) THEN
325 info = -1203
326 ELSE IF( ictxt.NE.descb( ctxt_ ) ) THEN
327 info = -1207
328 ELSE IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
329 info = -15
330 END IF
331 END IF
332 IF( lquery ) THEN
333 idum1( 1 ) = -1
334 ELSE
335 idum1( 1 ) = 1
336 END IF
337 idum2( 1 ) = 15
338 CALL pchk2mat( n, 1, m, 2, ia, ja, desca, 7, n, 1, p, 3, ib,
339 $ jb, descb, 12, 1, idum1, idum2, info )
340 END IF
341*
342 IF( info.NE.0 ) THEN
343 CALL pxerbla( ictxt, 'PZGGQRF', -info )
344 RETURN
345 ELSE IF( lquery ) THEN
346 RETURN
347 END IF
348*
349* QR factorization of N-by-M matrix sub( A ): sub( A ) = Q*R
350*
351 CALL pzgeqrf( n, m, a, ia, ja, desca, taua, work, lwork, info )
352 lwmin = int( work( 1 ) )
353*
354* Update sub( B ) := Q'*sub( B ).
355*
356 CALL pzunmqr( 'Left', 'Conjugate Transpose', n, p, min( n, m ), a,
357 $ ia, ja, desca, taua, b, ib, jb, descb, work, lwork,
358 $ info )
359 lwmin = min( lwmin, int( work( 1 ) ) )
360*
361* RQ factorization of N-by-P matrix sub( B ): sub( B ) = T*Z.
362*
363 CALL pzgerqf( n, p, b, ib, jb, descb, taub, work, lwork, info )
364 work( 1 ) = dcmplx( dble( max( lwmin, int( work( 1 ) ) ) ) )
365*
366 RETURN
367*
368* End of PZGGQRF
369*
370 END
subroutine chk1mat(ma, mapos0, na, napos0, ia, ja, desca, descapos0, info)
Definition chk1mat.f:3
#define max(A, B)
Definition pcgemr.c:180
#define min(A, B)
Definition pcgemr.c:181
subroutine pchk2mat(ma, mapos0, na, napos0, ia, ja, desca, descapos0, mb, mbpos0, nb, nbpos0, ib, jb, descb, descbpos0, nextra, ex, expos, info)
Definition pchkxmat.f:175
subroutine pxerbla(ictxt, srname, info)
Definition pxerbla.f:2
subroutine pzgeqrf(m, n, a, ia, ja, desca, tau, work, lwork, info)
Definition pzgeqrf.f:3
subroutine pzgerqf(m, n, a, ia, ja, desca, tau, work, lwork, info)
Definition pzgerqf.f:3
subroutine pzggqrf(n, m, p, a, ia, ja, desca, taua, b, ib, jb, descb, taub, work, lwork, info)
Definition pzggqrf.f:3
subroutine pzunmqr(side, trans, m, n, k, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork, info)
Definition pzunmqr.f:3