SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
pzunmrz.f
Go to the documentation of this file.
1 SUBROUTINE pzunmrz( SIDE, TRANS, M, N, K, L, A, IA, JA, DESCA,
2 $ TAU, C, IC, JC, DESCC, WORK, LWORK, INFO )
3*
4* -- ScaLAPACK routine (version 1.7) --
5* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
6* and University of California, Berkeley.
7* May 25, 2001
8*
9* .. Scalar Arguments ..
10 CHARACTER SIDE, TRANS
11 INTEGER IA, IC, INFO, JA, JC, K, L, LWORK, M, N
12* ..
13* .. Array Arguments ..
14 INTEGER DESCA( * ), DESCC( * )
15 COMPLEX*16 A( * ), C( * ), TAU( * ), WORK( * )
16* ..
17*
18* Purpose
19* =======
20*
21* PZUNMRZ overwrites the general complex M-by-N distributed matrix
22* sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with
23*
24* SIDE = 'L' SIDE = 'R'
25* TRANS = 'N': Q * sub( C ) sub( C ) * Q
26* TRANS = 'C': Q**H * sub( C ) sub( C ) * Q**H
27*
28* where Q is a complex unitary distributed matrix defined as the
29* product of K elementary reflectors
30*
31* Q = H(1)' H(2)' . . . H(k)'
32*
33* as returned by PZTZRZF. Q is of order M if SIDE = 'L' and of order N
34* if SIDE = 'R'.
35*
36* Notes
37* =====
38*
39* Each global data object is described by an associated description
40* vector. This vector stores the information required to establish
41* the mapping between an object element and its corresponding process
42* and memory location.
43*
44* Let A be a generic term for any 2D block cyclicly distributed array.
45* Such a global array has an associated description vector DESCA.
46* In the following comments, the character _ should be read as
47* "of the global array".
48*
49* NOTATION STORED IN EXPLANATION
50* --------------- -------------- --------------------------------------
51* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
52* DTYPE_A = 1.
53* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
54* the BLACS process grid A is distribu-
55* ted over. The context itself is glo-
56* bal, but the handle (the integer
57* value) may vary.
58* M_A (global) DESCA( M_ ) The number of rows in the global
59* array A.
60* N_A (global) DESCA( N_ ) The number of columns in the global
61* array A.
62* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
63* the rows of the array.
64* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
65* the columns of the array.
66* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
67* row of the array A is distributed.
68* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
69* first column of the array A is
70* distributed.
71* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
72* array. LLD_A >= MAX(1,LOCr(M_A)).
73*
74* Let K be the number of rows or columns of a distributed matrix,
75* and assume that its process grid has dimension p x q.
76* LOCr( K ) denotes the number of elements of K that a process
77* would receive if K were distributed over the p processes of its
78* process column.
79* Similarly, LOCc( K ) denotes the number of elements of K that a
80* process would receive if K were distributed over the q processes of
81* its process row.
82* The values of LOCr() and LOCc() may be determined via a call to the
83* ScaLAPACK tool function, NUMROC:
84* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
85* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
86* An upper bound for these quantities may be computed by:
87* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
88* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
89*
90* Arguments
91* =========
92*
93* SIDE (global input) CHARACTER
94* = 'L': apply Q or Q**H from the Left;
95* = 'R': apply Q or Q**H from the Right.
96*
97* TRANS (global input) CHARACTER
98* = 'N': No transpose, apply Q;
99* = 'C': Conjugate transpose, apply Q**H.
100*
101* M (global input) INTEGER
102* The number of rows to be operated on i.e the number of rows
103* of the distributed submatrix sub( C ). M >= 0.
104*
105* N (global input) INTEGER
106* The number of columns to be operated on i.e the number of
107* columns of the distributed submatrix sub( C ). N >= 0.
108*
109* K (global input) INTEGER
110* The number of elementary reflectors whose product defines the
111* matrix Q. If SIDE = 'L', M >= K >= 0, if SIDE = 'R',
112* N >= K >= 0.
113*
114* L (global input) INTEGER
115* The columns of the distributed submatrix sub( A ) containing
116* the meaningful part of the Householder reflectors.
117* If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
118*
119* A (local input) COMPLEX*16 pointer into the local memory
120* to an array of dimension (LLD_A,LOCc(JA+M-1)) if SIDE='L',
121* and (LLD_A,LOCc(JA+N-1)) if SIDE='R', where
122* LLD_A >= MAX(1,LOCr(IA+K-1)); On entry, the i-th row must
123* contain the vector which defines the elementary reflector
124* H(i), IA <= i <= IA+K-1, as returned by PZTZRZF in the
125* K rows of its distributed matrix argument A(IA:IA+K-1,JA:*).
126* A(IA:IA+K-1,JA:*) is modified by the routine but restored on
127* exit.
128*
129* IA (global input) INTEGER
130* The row index in the global array A indicating the first
131* row of sub( A ).
132*
133* JA (global input) INTEGER
134* The column index in the global array A indicating the
135* first column of sub( A ).
136*
137* DESCA (global and local input) INTEGER array of dimension DLEN_.
138* The array descriptor for the distributed matrix A.
139*
140* TAU (local input) COMPLEX*16, array, dimension LOCc(IA+K-1).
141* This array contains the scalar factors TAU(i) of the
142* elementary reflectors H(i) as returned by PZTZRZF.
143* TAU is tied to the distributed matrix A.
144*
145* C (local input/local output) COMPLEX*16 pointer into the
146* local memory to an array of dimension (LLD_C,LOCc(JC+N-1)).
147* On entry, the local pieces of the distributed matrix sub(C).
148* On exit, sub( C ) is overwritten by Q*sub( C ) or Q'*sub( C )
149* or sub( C )*Q' or sub( C )*Q.
150*
151* IC (global input) INTEGER
152* The row index in the global array C indicating the first
153* row of sub( C ).
154*
155* JC (global input) INTEGER
156* The column index in the global array C indicating the
157* first column of sub( C ).
158*
159* DESCC (global and local input) INTEGER array of dimension DLEN_.
160* The array descriptor for the distributed matrix C.
161*
162* WORK (local workspace/local output) COMPLEX*16 array,
163* dimension (LWORK)
164* On exit, WORK(1) returns the minimal and optimal LWORK.
165*
166* LWORK (local or global input) INTEGER
167* The dimension of the array WORK.
168* LWORK is local input and must be at least
169* if SIDE = 'L',
170* LWORK >= MAX( (MB_A*(MB_A-1))/2, ( MpC0 + MAX( MqA0 +
171* NUMROC( NUMROC( M+IROFFC, MB_A, 0, 0, NPROW ),
172* MB_A, 0, 0, LCMP ), NqC0 ) )*MB_A ) +
173* MB_A * MB_A
174* else if SIDE = 'R',
175* LWORK >= MAX( (MB_A*(MB_A-1))/2, (MpC0 + NqC0)*MB_A ) +
176* MB_A * MB_A
177* end if
178*
179* where LCMP = LCM / NPROW with LCM = ICLM( NPROW, NPCOL ),
180*
181* IROFFA = MOD( IA-1, MB_A ), ICOFFA = MOD( JA-1, NB_A ),
182* IACOL = INDXG2P( JA, NB_A, MYCOL, CSRC_A, NPCOL ),
183* MqA0 = NUMROC( M+ICOFFA, NB_A, MYCOL, IACOL, NPCOL ),
184*
185* IROFFC = MOD( IC-1, MB_C ), ICOFFC = MOD( JC-1, NB_C ),
186* ICROW = INDXG2P( IC, MB_C, MYROW, RSRC_C, NPROW ),
187* ICCOL = INDXG2P( JC, NB_C, MYCOL, CSRC_C, NPCOL ),
188* MpC0 = NUMROC( M+IROFFC, MB_C, MYROW, ICROW, NPROW ),
189* NqC0 = NUMROC( N+ICOFFC, NB_C, MYCOL, ICCOL, NPCOL ),
190*
191* ILCM, INDXG2P and NUMROC are ScaLAPACK tool functions;
192* MYROW, MYCOL, NPROW and NPCOL can be determined by calling
193* the subroutine BLACS_GRIDINFO.
194*
195* If LWORK = -1, then LWORK is global input and a workspace
196* query is assumed; the routine only calculates the minimum
197* and optimal size for all work arrays. Each of these
198* values is returned in the first entry of the corresponding
199* work array, and no error message is issued by PXERBLA.
200*
201*
202* INFO (global output) INTEGER
203* = 0: successful exit
204* < 0: If the i-th argument is an array and the j-entry had
205* an illegal value, then INFO = -(i*100+j), if the i-th
206* argument is a scalar and had an illegal value, then
207* INFO = -i.
208*
209* Alignment requirements
210* ======================
211*
212* The distributed submatrices A(IA:*, JA:*) and C(IC:IC+M-1,JC:JC+N-1)
213* must verify some alignment properties, namely the following
214* expressions should be true:
215*
216* If SIDE = 'L',
217* ( NB_A.EQ.MB_C .AND. ICOFFA.EQ.IROFFC )
218* If SIDE = 'R',
219* ( NB_A.EQ.NB_C .AND. ICOFFA.EQ.ICOFFC .AND. IACOL.EQ.ICCOL )
220*
221* =====================================================================
222*
223* .. Parameters ..
224 INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
225 $ lld_, mb_, m_, nb_, n_, rsrc_
226 parameter( block_cyclic_2d = 1, dlen_ = 9, dtype_ = 1,
227 $ ctxt_ = 2, m_ = 3, n_ = 4, mb_ = 5, nb_ = 6,
228 $ rsrc_ = 7, csrc_ = 8, lld_ = 9 )
229* ..
230* .. Local Scalars ..
231 LOGICAL LEFT, LQUERY, NOTRAN
232 CHARACTER COLBTOP, ROWBTOP, TRANST
233 INTEGER I, I1, I2, I3, IACOL, IB, ICC, ICCOL, ICOFFA,
234 $ icoffc, icrow, ictxt, iinfo, ipw, iroffc, jaa,
235 $ jcc, lcm, lcmp, lwmin, mi, mpc0, mqa0, mycol,
236 $ myrow, ni, npcol, nprow, nq, nqc0
237* ..
238* .. Local Arrays ..
239 INTEGER IDUM1( 5 ), IDUM2( 5 )
240* ..
241* .. External Subroutines ..
242 EXTERNAL blacs_gridinfo, chk1mat, pchk2mat, pb_topget,
243 $ pb_topset, pxerbla, pzlarzb, pzlarzt,
244 $ pzunmr3
245* ..
246* .. External Functions ..
247 LOGICAL LSAME
248 INTEGER ICEIL, ILCM, INDXG2P, NUMROC
249 EXTERNAL iceil, ilcm, indxg2p, lsame, numroc
250* ..
251* .. Intrinsic Functions ..
252 INTRINSIC dble, dcmplx, ichar, max, min, mod
253* ..
254* .. Executable Statements ..
255*
256* Get grid parameters
257*
258 ictxt = desca( ctxt_ )
259 CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
260*
261* Test the input parameters
262*
263 info = 0
264 IF( nprow.EQ.-1 ) THEN
265 info = -(900+ctxt_)
266 ELSE
267 left = lsame( side, 'L' )
268 notran = lsame( trans, 'N' )
269*
270* NQ is the order of Q
271*
272 IF( left ) THEN
273 nq = m
274 CALL chk1mat( k, 5, m, 3, ia, ja, desca, 10, info )
275 ELSE
276 nq = n
277 CALL chk1mat( k, 5, n, 4, ia, ja, desca, 10, info )
278 END IF
279 CALL chk1mat( m, 3, n, 4, ic, jc, descc, 15, info )
280 IF( info.EQ.0 ) THEN
281 icoffa = mod( ja-1, desca( nb_ ) )
282 iroffc = mod( ic-1, descc( mb_ ) )
283 icoffc = mod( jc-1, descc( nb_ ) )
284 iacol = indxg2p( ja, desca( nb_ ), mycol, desca( csrc_ ),
285 $ npcol )
286 icrow = indxg2p( ic, descc( mb_ ), myrow, descc( rsrc_ ),
287 $ nprow )
288 iccol = indxg2p( jc, descc( nb_ ), mycol, descc( csrc_ ),
289 $ npcol )
290 mpc0 = numroc( m+iroffc, descc( mb_ ), myrow, icrow, nprow )
291 nqc0 = numroc( n+icoffc, descc( nb_ ), mycol, iccol, npcol )
292*
293 IF( left ) THEN
294 mqa0 = numroc( m+icoffa, desca( nb_ ), mycol, iacol,
295 $ npcol )
296 lcm = ilcm( nprow, npcol )
297 lcmp = lcm / nprow
298 lwmin = max( ( desca( mb_ ) * ( desca( mb_ ) - 1 ) )
299 $ / 2, ( mpc0 + max( mqa0 + numroc( numroc(
300 $ m+iroffc, desca( mb_ ), 0, 0, nprow ),
301 $ desca( mb_ ), 0, 0, lcmp ), nqc0 ) ) *
302 $ desca( mb_ ) ) + desca( mb_ ) * desca( mb_ )
303 ELSE
304 lwmin = max( ( desca( mb_ ) * ( desca( mb_ ) - 1 ) ) / 2,
305 $ ( mpc0 + nqc0 ) * desca( mb_ ) ) +
306 $ desca( mb_ ) * desca( mb_ )
307 END IF
308*
309 work( 1 ) = dcmplx( dble( lwmin ) )
310 lquery = ( lwork.EQ.-1 )
311 IF( .NOT.left .AND. .NOT.lsame( side, 'R' ) ) THEN
312 info = -1
313 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'C' ) ) THEN
314 info = -2
315 ELSE IF( k.LT.0 .OR. k.GT.nq ) THEN
316 info = -5
317 ELSE IF( k.LT.0 .OR. k.GT.nq ) THEN
318 info = -6
319 ELSE IF( left .AND. desca( nb_ ).NE.descc( mb_ ) ) THEN
320 info = -(1000+nb_)
321 ELSE IF( left .AND. icoffa.NE.iroffc ) THEN
322 info = -13
323 ELSE IF( .NOT.left .AND. icoffa.NE.icoffc ) THEN
324 info = -14
325 ELSE IF( .NOT.left .AND. iacol.NE.iccol ) THEN
326 info = -14
327 ELSE IF( .NOT.left .AND. desca( nb_ ).NE.descc( nb_ ) ) THEN
328 info = -(1500+nb_)
329 ELSE IF( ictxt.NE.descc( ctxt_ ) ) THEN
330 info = -(1500+ctxt_)
331 ELSE IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
332 info = -17
333 END IF
334 END IF
335 IF( left ) THEN
336 idum1( 1 ) = ichar( 'L' )
337 ELSE
338 idum1( 1 ) = ichar( 'R' )
339 END IF
340 idum2( 1 ) = 1
341 IF( notran ) THEN
342 idum1( 2 ) = ichar( 'N' )
343 ELSE
344 idum1( 2 ) = ichar( 'C' )
345 END IF
346 idum2( 2 ) = 2
347 idum1( 3 ) = k
348 idum2( 3 ) = 5
349 idum1( 4 ) = l
350 idum2( 4 ) = 6
351 IF( lwork.EQ.-1 ) THEN
352 idum1( 5 ) = -1
353 ELSE
354 idum1( 5 ) = 1
355 END IF
356 idum2( 5 ) = 17
357 IF( left ) THEN
358 CALL pchk2mat( k, 5, m, 3, ia, ja, desca, 10, m, 3, n, 4,
359 $ ic, jc, descc, 15, 5, idum1, idum2, info )
360 ELSE
361 CALL pchk2mat( k, 5, n, 4, ia, ja, desca, 10, m, 3, n, 4,
362 $ ic, jc, descc, 15, 5, idum1, idum2, info )
363 END IF
364 END IF
365*
366 IF( info.NE.0 ) THEN
367 CALL pxerbla( ictxt, 'PZUNMRZ', -info )
368 RETURN
369 ELSE IF( lquery ) THEN
370 RETURN
371 END IF
372*
373* Quick return if possible
374*
375 IF( m.EQ.0 .OR. n.EQ.0 .OR. k.EQ.0 )
376 $ RETURN
377*
378 CALL pb_topget( ictxt, 'Broadcast', 'Rowwise', rowbtop )
379 CALL pb_topget( ictxt, 'Broadcast', 'Columnwise', colbtop )
380*
381 IF( ( left .AND. .NOT.notran ) .OR.
382 $ ( .NOT.left .AND. notran ) ) THEN
383 i1 = min( iceil( ia, desca( mb_ ) ) * desca( mb_ ), ia+k-1 )
384 $ + 1
385 i2 = ia + k - 1
386 i3 = desca( mb_ )
387 ELSE
388 i1 = max( ( (ia+k-2) / desca( mb_ ) ) * desca( mb_ ) + 1, ia )
389 i2 = min( iceil( ia, desca( mb_ ) ) * desca( mb_ ), ia+k-1 )
390 $ + 1
391 i3 = -desca( mb_ )
392 END IF
393*
394 IF( left ) THEN
395 ni = n
396 jcc = jc
397 jaa = ja + m - l
398 ELSE
399 mi = m
400 icc = ic
401 jaa = ja + n - l
402 CALL pb_topset( ictxt, 'Broadcast', 'Rowwise', ' ' )
403 IF( notran ) THEN
404 CALL pb_topset( ictxt, 'Broadcast', 'Columnwise', 'I-ring' )
405 ELSE
406 CALL pb_topset( ictxt, 'Broadcast', 'Columnwise', 'D-ring' )
407 END IF
408 END IF
409*
410 IF( notran ) THEN
411 transt = 'C'
412 ELSE
413 transt = 'N'
414 END IF
415*
416 IF( ( left .AND. .NOT.notran ) .OR.
417 $ ( .NOT.left .AND. notran ) ) THEN
418 ib = i1 - ia
419 IF( left ) THEN
420 mi = m
421 ELSE
422 ni = n
423 END IF
424 CALL pzunmr3( side, trans, mi, ni, ib, l, a, ia, ja, desca,
425 $ tau, c, ic, jc, descc, work, lwork, iinfo )
426 END IF
427*
428 ipw = desca( mb_ )*desca( mb_ ) + 1
429 DO 10 i = i1, i2, i3
430 ib = min( desca( mb_ ), k-i+ia )
431*
432* Form the triangular factor of the block reflector
433* H = H(i+ib-1) . . . H(i+1) H(i)
434*
435 CALL pzlarzt( 'Backward', 'Rowwise', l, ib, a, i, jaa, desca,
436 $ tau, work, work( ipw ) )
437 IF( left ) THEN
438*
439* H or H' is applied to C(ic+i-ia:ic+m-1,jc:jc+n-1)
440*
441 mi = m - i + ia
442 icc = ic + i - ia
443 ELSE
444*
445* H or H' is applied to C(ic:ic+m-1,jc+i-ia:jc+n-1)
446*
447 ni = n - i + ia
448 jcc = jc + i - ia
449 END IF
450*
451* Apply H or H'
452*
453 CALL pzlarzb( side, transt, 'Backward', 'Rowwise', mi, ni, ib,
454 $ l, a, i, jaa, desca, work, c, icc, jcc, descc,
455 $ work( ipw ) )
456 10 CONTINUE
457*
458 IF( ( left .AND. .NOT.notran ) .OR.
459 $ ( .NOT.left .AND. notran ) ) THEN
460 ib = i2 - ia
461 IF( left ) THEN
462 mi = m
463 ELSE
464 ni = n
465 END IF
466 CALL pzunmr3( side, trans, mi, ni, ib, l, a, ia, ja, desca,
467 $ tau, c, ic, jc, descc, work, lwork, iinfo )
468 END IF
469*
470 CALL pb_topset( ictxt, 'Broadcast', 'Rowwise', rowbtop )
471 CALL pb_topset( ictxt, 'Broadcast', 'Columnwise', colbtop )
472*
473 work( 1 ) = dcmplx( dble( lwmin ) )
474*
475 RETURN
476*
477* End of PZUNMRZ
478*
479 END
subroutine chk1mat(ma, mapos0, na, napos0, ia, ja, desca, descapos0, info)
Definition chk1mat.f:3
#define max(A, B)
Definition pcgemr.c:180
#define min(A, B)
Definition pcgemr.c:181
subroutine pchk2mat(ma, mapos0, na, napos0, ia, ja, desca, descapos0, mb, mbpos0, nb, nbpos0, ib, jb, descb, descbpos0, nextra, ex, expos, info)
Definition pchkxmat.f:175
subroutine pxerbla(ictxt, srname, info)
Definition pxerbla.f:2
subroutine pzlarzb(side, trans, direct, storev, m, n, k, l, v, iv, jv, descv, t, c, ic, jc, descc, work)
Definition pzlarzb.f:3
subroutine pzlarzt(direct, storev, n, k, v, iv, jv, descv, tau, t, work)
Definition pzlarzt.f:3
subroutine pzunmr3(side, trans, m, n, k, l, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork, info)
Definition pzunmr3.f:3
subroutine pzunmrz(side, trans, m, n, k, l, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork, info)
Definition pzunmrz.f:3