LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
cchkhe_aa_2stage.f
Go to the documentation of this file.
1*> \brief \b CCHKHE_AA_2STAGE
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8* Definition:
9* ===========
10*
11* SUBROUTINE CCHKHE_AA_2STAGE( DOTYPE, NN, NVAL, NNB, NBVAL,
12* NNS, NSVAL, THRESH, TSTERR, NMAX, A,
13* AFAC, AINV, B, X, XACT, WORK, RWORK,
14* IWORK, NOUT )
15*
16* .. Scalar Arguments ..
17* LOGICAL TSTERR
18* INTEGER NN, NNB, NNS, NOUT
19* REAL THRESH
20* ..
21* .. Array Arguments ..
22* LOGICAL DOTYPE( * )
23* INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
24* REAL RWORK( * )
25* COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ),
26* $ WORK( * ), X( * ), XACT( * )
27* ..
28*
29*
30*> \par Purpose:
31* =============
32*>
33*> \verbatim
34*>
35*> CCHKSY_AA_2STAGE tests CHETRF_AA_2STAGE, -TRS_AA_2STAGE.
36*> \endverbatim
37*
38* Arguments:
39* ==========
40*
41*> \param[in] DOTYPE
42*> \verbatim
43*> DOTYPE is LOGICAL array, dimension (NTYPES)
44*> The matrix types to be used for testing. Matrices of type j
45*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
46*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
47*> \endverbatim
48*>
49*> \param[in] NN
50*> \verbatim
51*> NN is INTEGER
52*> The number of values of N contained in the vector NVAL.
53*> \endverbatim
54*>
55*> \param[in] NVAL
56*> \verbatim
57*> NVAL is INTEGER array, dimension (NN)
58*> The values of the matrix dimension N.
59*> \endverbatim
60*>
61*> \param[in] NNB
62*> \verbatim
63*> NNB is INTEGER
64*> The number of values of NB contained in the vector NBVAL.
65*> \endverbatim
66*>
67*> \param[in] NBVAL
68*> \verbatim
69*> NBVAL is INTEGER array, dimension (NNB)
70*> The values of the blocksize NB.
71*> \endverbatim
72*>
73*> \param[in] NNS
74*> \verbatim
75*> NNS is INTEGER
76*> The number of values of NRHS contained in the vector NSVAL.
77*> \endverbatim
78*>
79*> \param[in] NSVAL
80*> \verbatim
81*> NSVAL is INTEGER array, dimension (NNS)
82*> The values of the number of right hand sides NRHS.
83*> \endverbatim
84*>
85*> \param[in] THRESH
86*> \verbatim
87*> THRESH is REAL
88*> The threshold value for the test ratios. A result is
89*> included in the output file if RESULT >= THRESH. To have
90*> every test ratio printed, use THRESH = 0.
91*> \endverbatim
92*>
93*> \param[in] TSTERR
94*> \verbatim
95*> TSTERR is LOGICAL
96*> Flag that indicates whether error exits are to be tested.
97*> \endverbatim
98*>
99*> \param[in] NMAX
100*> \verbatim
101*> NMAX is INTEGER
102*> The maximum value permitted for N, used in dimensioning the
103*> work arrays.
104*> \endverbatim
105*>
106*> \param[out] A
107*> \verbatim
108*> A is COMPLEX array, dimension (NMAX*NMAX)
109*> \endverbatim
110*>
111*> \param[out] AFAC
112*> \verbatim
113*> AFAC is COMPLEX array, dimension (NMAX*NMAX)
114*> \endverbatim
115*>
116*> \param[out] AINV
117*> \verbatim
118*> AINV is COMPLEX array, dimension (NMAX*NMAX)
119*> \endverbatim
120*>
121*> \param[out] B
122*> \verbatim
123*> B is COMPLEX array, dimension (NMAX*NSMAX)
124*> where NSMAX is the largest entry in NSVAL.
125*> \endverbatim
126*>
127*> \param[out] X
128*> \verbatim
129*> X is COMPLEX array, dimension (NMAX*NSMAX)
130*> \endverbatim
131*>
132*> \param[out] XACT
133*> \verbatim
134*> XACT is COMPLEX array, dimension (NMAX*NSMAX)
135*> \endverbatim
136*>
137*> \param[out] WORK
138*> \verbatim
139*> WORK is COMPLEX array, dimension (NMAX*max(3,NSMAX))
140*> \endverbatim
141*>
142*> \param[out] RWORK
143*> \verbatim
144*> RWORK is REAL array, dimension (max(NMAX,2*NSMAX))
145*> \endverbatim
146*>
147*> \param[out] IWORK
148*> \verbatim
149*> IWORK is INTEGER array, dimension (2*NMAX)
150*> \endverbatim
151*>
152*> \param[in] NOUT
153*> \verbatim
154*> NOUT is INTEGER
155*> The unit number for output.
156*> \endverbatim
157*
158* Authors:
159* ========
160*
161*> \author Univ. of Tennessee
162*> \author Univ. of California Berkeley
163*> \author Univ. of Colorado Denver
164*> \author NAG Ltd.
165*
166*> \ingroup complex_lin
167*
168* =====================================================================
169 SUBROUTINE cchkhe_aa_2stage( DOTYPE, NN, NVAL, NNB, NBVAL, NNS,
170 $ NSVAL, THRESH, TSTERR, NMAX, A, AFAC, AINV,
171 $ B, X, XACT, WORK, RWORK, IWORK, NOUT )
172*
173* -- LAPACK test routine --
174* -- LAPACK is a software package provided by Univ. of Tennessee, --
175* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
176*
177 IMPLICIT NONE
178*
179* .. Scalar Arguments ..
180 LOGICAL TSTERR
181 INTEGER NN, NNB, NNS, NMAX, NOUT
182 REAL THRESH
183* ..
184* .. Array Arguments ..
185*
186 LOGICAL DOTYPE( * )
187 INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
188 REAL RWORK( * )
189 COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ),
190 $ work( * ), x( * ), xact( * )
191* ..
192*
193* =====================================================================
194*
195* .. Parameters ..
196 REAL ZERO
197 PARAMETER ( ZERO = 0.0e+0 )
198 COMPLEX CZERO
199 parameter( czero = ( 0.0e+0, 0.0e+0 ) )
200 INTEGER NTYPES
201 parameter( ntypes = 10 )
202 INTEGER NTESTS
203 parameter( ntests = 9 )
204* ..
205* .. Local Scalars ..
206 LOGICAL ZEROT
207 CHARACTER DIST, TYPE, UPLO, XTYPE
208 CHARACTER*3 PATH, MATPATH
209 INTEGER I, I1, I2, IMAT, IN, INB, INFO, IOFF, IRHS,
210 $ iuplo, izero, j, k, kl, ku, lda, lwork, mode,
211 $ n, nb, nerrs, nfail, nimat, nrhs, nrun, nt
212 REAL ANORM, CNDNUM
213* ..
214* .. Local Arrays ..
215 CHARACTER UPLOS( 2 )
216 INTEGER ISEED( 4 ), ISEEDY( 4 )
217 REAL RESULT( NTESTS )
218* ..
219* .. External Subroutines ..
220 EXTERNAL alaerh, alahd, alasum, cerrhe, clacpy,
224* ..
225* .. Intrinsic Functions ..
226 INTRINSIC max, min
227* ..
228* .. Scalars in Common ..
229 LOGICAL LERR, OK
230 CHARACTER*32 SRNAMT
231 INTEGER INFOT, NUNIT
232* ..
233* .. Common blocks ..
234 COMMON / infoc / infot, nunit, ok, lerr
235 COMMON / srnamc / srnamt
236* ..
237* .. Data statements ..
238 DATA iseedy / 1988, 1989, 1990, 1991 /
239 DATA uplos / 'U', 'L' /
240* ..
241* .. Executable Statements ..
242*
243* Initialize constants and the random number seed.
244*
245*
246* Test path
247*
248 path( 1: 1 ) = 'Complex precision'
249 path( 2: 3 ) = 'H2'
250*
251* Path to generate matrices
252*
253 matpath( 1: 1 ) = 'Complex precision'
254 matpath( 2: 3 ) = 'HE'
255 nrun = 0
256 nfail = 0
257 nerrs = 0
258 DO 10 i = 1, 4
259 iseed( i ) = iseedy( i )
260 10 CONTINUE
261*
262* Test the error exits
263*
264 IF( tsterr )
265 $ CALL cerrhe( path, nout )
266 infot = 0
267*
268* Set the minimum block size for which the block routine should
269* be used, which will be later returned by ILAENV
270*
271 CALL xlaenv( 2, 2 )
272*
273* Do for each value of N in NVAL
274*
275 DO 180 in = 1, nn
276 n = nval( in )
277 IF( n .GT. nmax ) THEN
278 nfail = nfail + 1
279 WRITE(nout, 9995) 'M ', n, nmax
280 GO TO 180
281 END IF
282 lda = max( n, 1 )
283 xtype = 'N'
284 nimat = ntypes
285 IF( n.LE.0 )
286 $ nimat = 1
287*
288 izero = 0
289*
290* Do for each value of matrix type IMAT
291*
292 DO 170 imat = 1, nimat
293*
294* Do the tests only if DOTYPE( IMAT ) is true.
295*
296 IF( .NOT.dotype( imat ) )
297 $ GO TO 170
298*
299* Skip types 3, 4, 5, or 6 if the matrix size is too small.
300*
301 zerot = imat.GE.3 .AND. imat.LE.6
302 IF( zerot .AND. n.LT.imat-2 )
303 $ GO TO 170
304*
305* Do first for UPLO = 'U', then for UPLO = 'L'
306*
307 DO 160 iuplo = 1, 2
308 uplo = uplos( iuplo )
309*
310* Begin generate the test matrix A.
311*
312*
313* Set up parameters with CLATB4 for the matrix generator
314* based on the type of matrix to be generated.
315*
316 CALL clatb4( matpath, imat, n, n, TYPE, kl, ku,
317 $ anorm, mode, cndnum, dist )
318*
319* Generate a matrix with CLATMS.
320*
321 srnamt = 'CLATMS'
322 CALL clatms( n, n, dist, iseed, TYPE, rwork, mode,
323 $ cndnum, anorm, kl, ku, uplo, a, lda, work,
324 $ info )
325*
326* Check error code from CLATMS and handle error.
327*
328 IF( info.NE.0 ) THEN
329 CALL alaerh( path, 'CLATMS', info, 0, uplo, n, n, -1,
330 $ -1, -1, imat, nfail, nerrs, nout )
331*
332* Skip all tests for this generated matrix
333*
334 GO TO 160
335 END IF
336*
337* For matrix types 3-6, zero one or more rows and
338* columns of the matrix to test that INFO is returned
339* correctly.
340*
341 IF( zerot ) THEN
342 IF( imat.EQ.3 ) THEN
343 izero = 1
344 ELSE IF( imat.EQ.4 ) THEN
345 izero = n
346 ELSE
347 izero = n / 2 + 1
348 END IF
349*
350 IF( imat.LT.6 ) THEN
351*
352* Set row and column IZERO to zero.
353*
354 IF( iuplo.EQ.1 ) THEN
355 ioff = ( izero-1 )*lda
356 DO 20 i = 1, izero - 1
357 a( ioff+i ) = czero
358 20 CONTINUE
359 ioff = ioff + izero
360 DO 30 i = izero, n
361 a( ioff ) = czero
362 ioff = ioff + lda
363 30 CONTINUE
364 ELSE
365 ioff = izero
366 DO 40 i = 1, izero - 1
367 a( ioff ) = czero
368 ioff = ioff + lda
369 40 CONTINUE
370 ioff = ioff - izero
371 DO 50 i = izero, n
372 a( ioff+i ) = czero
373 50 CONTINUE
374 END IF
375 ELSE
376 IF( iuplo.EQ.1 ) THEN
377*
378* Set the first IZERO rows and columns to zero.
379*
380 ioff = 0
381 DO 70 j = 1, n
382 i2 = min( j, izero )
383 DO 60 i = 1, i2
384 a( ioff+i ) = czero
385 60 CONTINUE
386 ioff = ioff + lda
387 70 CONTINUE
388 izero = 1
389 ELSE
390*
391* Set the last IZERO rows and columns to zero.
392*
393 ioff = 0
394 DO 90 j = 1, n
395 i1 = max( j, izero )
396 DO 80 i = i1, n
397 a( ioff+i ) = czero
398 80 CONTINUE
399 ioff = ioff + lda
400 90 CONTINUE
401 END IF
402 END IF
403 ELSE
404 izero = 0
405 END IF
406*
407* End generate test matrix A.
408*
409*
410* Set the imaginary part of the diagonals.
411*
412 CALL claipd( n, a, lda+1, 0 )
413*
414* Do for each value of NB in NBVAL
415*
416 DO 150 inb = 1, nnb
417*
418* Set the optimal blocksize, which will be later
419* returned by ILAENV.
420*
421 nb = nbval( inb )
422 CALL xlaenv( 1, nb )
423*
424* Copy the test matrix A into matrix AFAC which
425* will be factorized in place. This is needed to
426* preserve the test matrix A for subsequent tests.
427*
428 CALL clacpy( uplo, n, n, a, lda, afac, lda )
429*
430* Compute the L*D*L**T or U*D*U**T factorization of the
431* matrix. IWORK stores details of the interchanges and
432* the block structure of D. AINV is a work array for
433* block factorization, LWORK is the length of AINV.
434*
435 srnamt = 'CHETRF_AA_2STAGE'
436 lwork = min(n*nb, 3*nmax*nmax)
437 CALL chetrf_aa_2stage( uplo, n, afac, lda,
438 $ ainv, (3*nb+1)*n,
439 $ iwork, iwork( 1+n ),
440 $ work, lwork,
441 $ info )
442*
443* Adjust the expected value of INFO to account for
444* pivoting.
445*
446 IF( izero.GT.0 ) THEN
447 j = 1
448 k = izero
449 100 CONTINUE
450 IF( j.EQ.k ) THEN
451 k = iwork( j )
452 ELSE IF( iwork( j ).EQ.k ) THEN
453 k = j
454 END IF
455 IF( j.LT.k ) THEN
456 j = j + 1
457 GO TO 100
458 END IF
459 ELSE
460 k = 0
461 END IF
462*
463* Check error code from CHETRF and handle error.
464*
465 IF( info.NE.k ) THEN
466 CALL alaerh( path, 'CHETRF_AA_2STAGE', info, k,
467 $ uplo, n, n, -1, -1, nb, imat, nfail,
468 $ nerrs, nout )
469 END IF
470*
471*+ TEST 1
472* Reconstruct matrix from factors and compute residual.
473*
474*
475c NEED TO WRITE CHET01_AA_2STAGE
476c CALL CHET01_AA( UPLO, N, A, LDA, AFAC, LDA, IWORK,
477c $ AINV, LDA, RWORK, RESULT( 1 ) )
478c NT = 1
479 nt = 0
480*
481*
482* Print information about the tests that did not pass
483* the threshold.
484*
485 DO 110 k = 1, nt
486 IF( result( k ).GE.thresh ) THEN
487 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
488 $ CALL alahd( nout, path )
489 WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
490 $ result( k )
491 nfail = nfail + 1
492 END IF
493 110 CONTINUE
494 nrun = nrun + nt
495*
496* Skip solver test if INFO is not 0.
497*
498 IF( info.NE.0 ) THEN
499 GO TO 140
500 END IF
501*
502* Do for each value of NRHS in NSVAL.
503*
504 DO 130 irhs = 1, nns
505 nrhs = nsval( irhs )
506*
507*+ TEST 2 (Using TRS)
508* Solve and compute residual for A * X = B.
509*
510* Choose a set of NRHS random solution vectors
511* stored in XACT and set up the right hand side B
512*
513 srnamt = 'CLARHS'
514 CALL clarhs( matpath, xtype, uplo, ' ', n, n,
515 $ kl, ku, nrhs, a, lda, xact, lda,
516 $ b, lda, iseed, info )
517 CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
518*
519 srnamt = 'CHETRS_AA_2STAGE'
520 lwork = max( 1, 3*n-2 )
521 CALL chetrs_aa_2stage( uplo, n, nrhs, afac, lda,
522 $ ainv, (3*nb+1)*n, iwork, iwork( 1+n ),
523 $ x, lda, info )
524*
525* Check error code from CHETRS and handle error.
526*
527 IF( info.NE.0 ) THEN
528 IF( izero.EQ.0 ) THEN
529 CALL alaerh( path, 'CHETRS_AA_2STAGE',
530 $ info, 0, uplo, n, n, -1, -1,
531 $ nrhs, imat, nfail, nerrs, nout )
532 END IF
533 ELSE
534 CALL clacpy( 'Full', n, nrhs, b, lda, work, lda
535 $ )
536*
537* Compute the residual for the solution
538*
539 CALL cpot02( uplo, n, nrhs, a, lda, x, lda,
540 $ work, lda, rwork, result( 2 ) )
541*
542* Print information about the tests that did not pass
543* the threshold.
544*
545 DO 120 k = 2, 2
546 IF( result( k ).GE.thresh ) THEN
547 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
548 $ CALL alahd( nout, path )
549 WRITE( nout, fmt = 9998 )uplo, n, nrhs,
550 $ imat, k, result( k )
551 nfail = nfail + 1
552 END IF
553 120 CONTINUE
554 END IF
555 nrun = nrun + 1
556*
557* End do for each value of NRHS in NSVAL.
558*
559 130 CONTINUE
560 140 CONTINUE
561 150 CONTINUE
562 160 CONTINUE
563 170 CONTINUE
564 180 CONTINUE
565*
566* Print a summary of the results.
567*
568 CALL alasum( path, nout, nfail, nrun, nerrs )
569*
570 9999 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NB =', i4, ', type ',
571 $ i2, ', test ', i2, ', ratio =', g12.5 )
572 9998 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NRHS=', i3, ', type ',
573 $ i2, ', test(', i2, ') =', g12.5 )
574 9995 FORMAT( ' Invalid input value: ', a4, '=', i6, '; must be <=',
575 $ i6 )
576 RETURN
577*
578* End of CCHKHE_AA_2STAGE
579*
580 END
subroutine alasum(type, nout, nfail, nrun, nerrs)
ALASUM
Definition alasum.f:73
subroutine clarhs(path, xtype, uplo, trans, m, n, kl, ku, nrhs, a, lda, x, ldx, b, ldb, iseed, info)
CLARHS
Definition clarhs.f:208
subroutine xlaenv(ispec, nvalue)
XLAENV
Definition xlaenv.f:81
subroutine alaerh(path, subnam, info, infoe, opts, m, n, kl, ku, n5, imat, nfail, nerrs, nout)
ALAERH
Definition alaerh.f:147
subroutine alahd(iounit, path)
ALAHD
Definition alahd.f:107
subroutine cchkhe_aa_2stage(dotype, nn, nval, nnb, nbval, nns, nsval, thresh, tsterr, nmax, a, afac, ainv, b, x, xact, work, rwork, iwork, nout)
CCHKHE_AA_2STAGE
subroutine cerrhe(path, nunit)
CERRHE
Definition cerrhe.f:55
subroutine claipd(n, a, inda, vinda)
CLAIPD
Definition claipd.f:83
subroutine clatb4(path, imat, m, n, type, kl, ku, anorm, mode, cndnum, dist)
CLATB4
Definition clatb4.f:121
subroutine clatms(m, n, dist, iseed, sym, d, mode, cond, dmax, kl, ku, pack, a, lda, work, info)
CLATMS
Definition clatms.f:332
subroutine cpot02(uplo, n, nrhs, a, lda, x, ldx, b, ldb, rwork, resid)
CPOT02
Definition cpot02.f:127
subroutine chetrf_aa_2stage(uplo, n, a, lda, tb, ltb, ipiv, ipiv2, work, lwork, info)
CHETRF_AA_2STAGE
subroutine chetrs_aa_2stage(uplo, n, nrhs, a, lda, tb, ltb, ipiv, ipiv2, b, ldb, info)
CHETRS_AA_2STAGE
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:103