LAPACK 3.11.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zchktr.f
Go to the documentation of this file.
1*> \brief \b ZCHKTR
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8* Definition:
9* ===========
10*
11* SUBROUTINE ZCHKTR( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
12* THRESH, TSTERR, NMAX, A, AINV, B, X, XACT,
13* WORK, RWORK, NOUT )
14*
15* .. Scalar Arguments ..
16* LOGICAL TSTERR
17* INTEGER NMAX, NN, NNB, NNS, NOUT
18* DOUBLE PRECISION THRESH
19* ..
20* .. Array Arguments ..
21* LOGICAL DOTYPE( * )
22* INTEGER NBVAL( * ), NSVAL( * ), NVAL( * )
23* DOUBLE PRECISION RWORK( * )
24* COMPLEX*16 A( * ), AINV( * ), B( * ), WORK( * ), X( * ),
25* $ XACT( * )
26* ..
27*
28*
29*> \par Purpose:
30* =============
31*>
32*> \verbatim
33*>
34*> ZCHKTR tests ZTRTRI, -TRS, -RFS, and -CON, and ZLATRS(3)
35*> \endverbatim
36*
37* Arguments:
38* ==========
39*
40*> \param[in] DOTYPE
41*> \verbatim
42*> DOTYPE is LOGICAL array, dimension (NTYPES)
43*> The matrix types to be used for testing. Matrices of type j
44*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
45*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
46*> \endverbatim
47*>
48*> \param[in] NN
49*> \verbatim
50*> NN is INTEGER
51*> The number of values of N contained in the vector NVAL.
52*> \endverbatim
53*>
54*> \param[in] NVAL
55*> \verbatim
56*> NVAL is INTEGER array, dimension (NN)
57*> The values of the matrix column dimension N.
58*> \endverbatim
59*>
60*> \param[in] NNB
61*> \verbatim
62*> NNB is INTEGER
63*> The number of values of NB contained in the vector NBVAL.
64*> \endverbatim
65*>
66*> \param[in] NBVAL
67*> \verbatim
68*> NBVAL is INTEGER array, dimension (NNB)
69*> The values of the blocksize NB.
70*> \endverbatim
71*>
72*> \param[in] NNS
73*> \verbatim
74*> NNS is INTEGER
75*> The number of values of NRHS contained in the vector NSVAL.
76*> \endverbatim
77*>
78*> \param[in] NSVAL
79*> \verbatim
80*> NSVAL is INTEGER array, dimension (NNS)
81*> The values of the number of right hand sides NRHS.
82*> \endverbatim
83*>
84*> \param[in] THRESH
85*> \verbatim
86*> THRESH is DOUBLE PRECISION
87*> The threshold value for the test ratios. A result is
88*> included in the output file if RESULT >= THRESH. To have
89*> every test ratio printed, use THRESH = 0.
90*> \endverbatim
91*>
92*> \param[in] TSTERR
93*> \verbatim
94*> TSTERR is LOGICAL
95*> Flag that indicates whether error exits are to be tested.
96*> \endverbatim
97*>
98*> \param[in] NMAX
99*> \verbatim
100*> NMAX is INTEGER
101*> The leading dimension of the work arrays.
102*> NMAX >= the maximum value of N in NVAL.
103*> \endverbatim
104*>
105*> \param[out] A
106*> \verbatim
107*> A is COMPLEX*16 array, dimension (NMAX*NMAX)
108*> \endverbatim
109*>
110*> \param[out] AINV
111*> \verbatim
112*> AINV is COMPLEX*16 array, dimension (NMAX*NMAX)
113*> \endverbatim
114*>
115*> \param[out] B
116*> \verbatim
117*> B is COMPLEX*16 array, dimension (NMAX*NSMAX)
118*> where NSMAX is the largest entry in NSVAL.
119*> \endverbatim
120*>
121*> \param[out] X
122*> \verbatim
123*> X is COMPLEX*16 array, dimension (NMAX*NSMAX)
124*> \endverbatim
125*>
126*> \param[out] XACT
127*> \verbatim
128*> XACT is COMPLEX*16 array, dimension (NMAX*NSMAX)
129*> \endverbatim
130*>
131*> \param[out] WORK
132*> \verbatim
133*> WORK is COMPLEX*16 array, dimension
134*> (NMAX*max(3,NSMAX))
135*> \endverbatim
136*>
137*> \param[out] RWORK
138*> \verbatim
139*> RWORK is DOUBLE PRECISION array, dimension
140*> (max(NMAX,2*NSMAX))
141*> \endverbatim
142*>
143*> \param[in] NOUT
144*> \verbatim
145*> NOUT is INTEGER
146*> The unit number for output.
147*> \endverbatim
148*
149* Authors:
150* ========
151*
152*> \author Univ. of Tennessee
153*> \author Univ. of California Berkeley
154*> \author Univ. of Colorado Denver
155*> \author NAG Ltd.
156*
157*> \ingroup complex16_lin
158*
159* =====================================================================
160 SUBROUTINE zchktr( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
161 $ THRESH, TSTERR, NMAX, A, AINV, B, X, XACT,
162 $ WORK, RWORK, NOUT )
163*
164* -- LAPACK test routine --
165* -- LAPACK is a software package provided by Univ. of Tennessee, --
166* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
167*
168* .. Scalar Arguments ..
169 LOGICAL TSTERR
170 INTEGER NMAX, NN, NNB, NNS, NOUT
171 DOUBLE PRECISION THRESH
172* ..
173* .. Array Arguments ..
174 LOGICAL DOTYPE( * )
175 INTEGER NBVAL( * ), NSVAL( * ), NVAL( * )
176 DOUBLE PRECISION RWORK( * )
177 COMPLEX*16 A( * ), AINV( * ), B( * ), WORK( * ), X( * ),
178 $ xact( * )
179* ..
180*
181* =====================================================================
182*
183* .. Parameters ..
184 INTEGER NTYPE1, NTYPES
185 PARAMETER ( NTYPE1 = 10, ntypes = 18 )
186 INTEGER NTESTS
187 parameter( ntests = 10 )
188 INTEGER NTRAN
189 parameter( ntran = 3 )
190 DOUBLE PRECISION ONE, ZERO
191 parameter( one = 1.0d0, zero = 0.0d0 )
192* ..
193* .. Local Scalars ..
194 CHARACTER DIAG, NORM, TRANS, UPLO, XTYPE
195 CHARACTER*3 PATH
196 INTEGER I, IDIAG, IMAT, IN, INB, INFO, IRHS, ITRAN,
197 $ iuplo, k, lda, n, nb, nerrs, nfail, nrhs, nrun
198 DOUBLE PRECISION AINVNM, ANORM, BIGNUM, DUMMY, RCOND, RCONDC,
199 $ RCONDI, RCONDO, RES, SCALE, DLAMCH
200* ..
201* .. Local Arrays ..
202 CHARACTER TRANSS( NTRAN ), UPLOS( 2 )
203 INTEGER ISEED( 4 ), ISEEDY( 4 )
204 DOUBLE PRECISION RESULT( NTESTS ), SCALE3( 2 )
205* ..
206* .. External Functions ..
207 LOGICAL LSAME
208 DOUBLE PRECISION ZLANTR
209 EXTERNAL lsame, zlantr
210* ..
211* .. External Subroutines ..
212 EXTERNAL alaerh, alahd, alasum, dlamch, xlaenv, zcopy,
216* ..
217* .. Scalars in Common ..
218 LOGICAL LERR, OK
219 CHARACTER*32 SRNAMT
220 INTEGER INFOT, IOUNIT
221* ..
222* .. Common blocks ..
223 COMMON / infoc / infot, iounit, ok, lerr
224 COMMON / srnamc / srnamt
225* ..
226* .. Intrinsic Functions ..
227 INTRINSIC max
228* ..
229* .. Data statements ..
230 DATA iseedy / 1988, 1989, 1990, 1991 /
231 DATA uplos / 'U', 'L' / , transs / 'N', 'T', 'C' /
232* ..
233* .. Executable Statements ..
234*
235* Initialize constants and the random number seed.
236*
237 path( 1: 1 ) = 'Zomplex precision'
238 path( 2: 3 ) = 'TR'
239 bignum = dlamch('Overflow') / dlamch('Precision')
240 nrun = 0
241 nfail = 0
242 nerrs = 0
243 DO 10 i = 1, 4
244 iseed( i ) = iseedy( i )
245 10 CONTINUE
246*
247* Test the error exits
248*
249 IF( tsterr )
250 $ CALL zerrtr( path, nout )
251 infot = 0
252*
253 DO 120 in = 1, nn
254*
255* Do for each value of N in NVAL
256*
257 n = nval( in )
258 lda = max( 1, n )
259 xtype = 'N'
260*
261 DO 80 imat = 1, ntype1
262*
263* Do the tests only if DOTYPE( IMAT ) is true.
264*
265 IF( .NOT.dotype( imat ) )
266 $ GO TO 80
267*
268 DO 70 iuplo = 1, 2
269*
270* Do first for UPLO = 'U', then for UPLO = 'L'
271*
272 uplo = uplos( iuplo )
273*
274* Call ZLATTR to generate a triangular test matrix.
275*
276 srnamt = 'ZLATTR'
277 CALL zlattr( imat, uplo, 'No transpose', diag, iseed, n,
278 $ a, lda, x, work, rwork, info )
279*
280* Set IDIAG = 1 for non-unit matrices, 2 for unit.
281*
282 IF( lsame( diag, 'N' ) ) THEN
283 idiag = 1
284 ELSE
285 idiag = 2
286 END IF
287*
288 DO 60 inb = 1, nnb
289*
290* Do for each blocksize in NBVAL
291*
292 nb = nbval( inb )
293 CALL xlaenv( 1, nb )
294*
295*+ TEST 1
296* Form the inverse of A.
297*
298 CALL zlacpy( uplo, n, n, a, lda, ainv, lda )
299 srnamt = 'ZTRTRI'
300 CALL ztrtri( uplo, diag, n, ainv, lda, info )
301*
302* Check error code from ZTRTRI.
303*
304 IF( info.NE.0 )
305 $ CALL alaerh( path, 'ZTRTRI', info, 0, uplo // diag,
306 $ n, n, -1, -1, nb, imat, nfail, nerrs,
307 $ nout )
308*
309* Compute the infinity-norm condition number of A.
310*
311 anorm = zlantr( 'I', uplo, diag, n, n, a, lda, rwork )
312 ainvnm = zlantr( 'I', uplo, diag, n, n, ainv, lda,
313 $ rwork )
314 IF( anorm.LE.zero .OR. ainvnm.LE.zero ) THEN
315 rcondi = one
316 ELSE
317 rcondi = ( one / anorm ) / ainvnm
318 END IF
319*
320* Compute the residual for the triangular matrix times
321* its inverse. Also compute the 1-norm condition number
322* of A.
323*
324 CALL ztrt01( uplo, diag, n, a, lda, ainv, lda, rcondo,
325 $ rwork, result( 1 ) )
326* Print the test ratio if it is .GE. THRESH.
327*
328 IF( result( 1 ).GE.thresh ) THEN
329 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
330 $ CALL alahd( nout, path )
331 WRITE( nout, fmt = 9999 )uplo, diag, n, nb, imat,
332 $ 1, result( 1 )
333 nfail = nfail + 1
334 END IF
335 nrun = nrun + 1
336*
337* Skip remaining tests if not the first block size.
338*
339 IF( inb.NE.1 )
340 $ GO TO 60
341*
342 DO 40 irhs = 1, nns
343 nrhs = nsval( irhs )
344 xtype = 'N'
345*
346 DO 30 itran = 1, ntran
347*
348* Do for op(A) = A, A**T, or A**H.
349*
350 trans = transs( itran )
351 IF( itran.EQ.1 ) THEN
352 norm = 'O'
353 rcondc = rcondo
354 ELSE
355 norm = 'I'
356 rcondc = rcondi
357 END IF
358*
359*+ TEST 2
360* Solve and compute residual for op(A)*x = b.
361*
362 srnamt = 'ZLARHS'
363 CALL zlarhs( path, xtype, uplo, trans, n, n, 0,
364 $ idiag, nrhs, a, lda, xact, lda, b,
365 $ lda, iseed, info )
366 xtype = 'C'
367 CALL zlacpy( 'Full', n, nrhs, b, lda, x, lda )
368*
369 srnamt = 'ZTRTRS'
370 CALL ztrtrs( uplo, trans, diag, n, nrhs, a, lda,
371 $ x, lda, info )
372*
373* Check error code from ZTRTRS.
374*
375 IF( info.NE.0 )
376 $ CALL alaerh( path, 'ZTRTRS', info, 0,
377 $ uplo // trans // diag, n, n, -1,
378 $ -1, nrhs, imat, nfail, nerrs,
379 $ nout )
380*
381* This line is needed on a Sun SPARCstation.
382*
383 IF( n.GT.0 )
384 $ dummy = dble( a( 1 ) )
385*
386 CALL ztrt02( uplo, trans, diag, n, nrhs, a, lda,
387 $ x, lda, b, lda, work, rwork,
388 $ result( 2 ) )
389*
390*+ TEST 3
391* Check solution from generated exact solution.
392*
393 CALL zget04( n, nrhs, x, lda, xact, lda, rcondc,
394 $ result( 3 ) )
395*
396*+ TESTS 4, 5, and 6
397* Use iterative refinement to improve the solution
398* and compute error bounds.
399*
400 srnamt = 'ZTRRFS'
401 CALL ztrrfs( uplo, trans, diag, n, nrhs, a, lda,
402 $ b, lda, x, lda, rwork,
403 $ rwork( nrhs+1 ), work,
404 $ rwork( 2*nrhs+1 ), info )
405*
406* Check error code from ZTRRFS.
407*
408 IF( info.NE.0 )
409 $ CALL alaerh( path, 'ZTRRFS', info, 0,
410 $ uplo // trans // diag, n, n, -1,
411 $ -1, nrhs, imat, nfail, nerrs,
412 $ nout )
413*
414 CALL zget04( n, nrhs, x, lda, xact, lda, rcondc,
415 $ result( 4 ) )
416 CALL ztrt05( uplo, trans, diag, n, nrhs, a, lda,
417 $ b, lda, x, lda, xact, lda, rwork,
418 $ rwork( nrhs+1 ), result( 5 ) )
419*
420* Print information about the tests that did not
421* pass the threshold.
422*
423 DO 20 k = 2, 6
424 IF( result( k ).GE.thresh ) THEN
425 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
426 $ CALL alahd( nout, path )
427 WRITE( nout, fmt = 9998 )uplo, trans,
428 $ diag, n, nrhs, imat, k, result( k )
429 nfail = nfail + 1
430 END IF
431 20 CONTINUE
432 nrun = nrun + 5
433 30 CONTINUE
434 40 CONTINUE
435*
436*+ TEST 7
437* Get an estimate of RCOND = 1/CNDNUM.
438*
439 DO 50 itran = 1, 2
440 IF( itran.EQ.1 ) THEN
441 norm = 'O'
442 rcondc = rcondo
443 ELSE
444 norm = 'I'
445 rcondc = rcondi
446 END IF
447 srnamt = 'ZTRCON'
448 CALL ztrcon( norm, uplo, diag, n, a, lda, rcond,
449 $ work, rwork, info )
450*
451* Check error code from ZTRCON.
452*
453 IF( info.NE.0 )
454 $ CALL alaerh( path, 'ZTRCON', info, 0,
455 $ norm // uplo // diag, n, n, -1, -1,
456 $ -1, imat, nfail, nerrs, nout )
457*
458 CALL ztrt06( rcond, rcondc, uplo, diag, n, a, lda,
459 $ rwork, result( 7 ) )
460*
461* Print the test ratio if it is .GE. THRESH.
462*
463 IF( result( 7 ).GE.thresh ) THEN
464 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
465 $ CALL alahd( nout, path )
466 WRITE( nout, fmt = 9997 )norm, uplo, n, imat,
467 $ 7, result( 7 )
468 nfail = nfail + 1
469 END IF
470 nrun = nrun + 1
471 50 CONTINUE
472 60 CONTINUE
473 70 CONTINUE
474 80 CONTINUE
475*
476* Use pathological test matrices to test ZLATRS.
477*
478 DO 110 imat = ntype1 + 1, ntypes
479*
480* Do the tests only if DOTYPE( IMAT ) is true.
481*
482 IF( .NOT.dotype( imat ) )
483 $ GO TO 110
484*
485 DO 100 iuplo = 1, 2
486*
487* Do first for UPLO = 'U', then for UPLO = 'L'
488*
489 uplo = uplos( iuplo )
490 DO 90 itran = 1, ntran
491*
492* Do for op(A) = A, A**T, and A**H.
493*
494 trans = transs( itran )
495*
496* Call ZLATTR to generate a triangular test matrix.
497*
498 srnamt = 'ZLATTR'
499 CALL zlattr( imat, uplo, trans, diag, iseed, n, a,
500 $ lda, x, work, rwork, info )
501*
502*+ TEST 8
503* Solve the system op(A)*x = b.
504*
505 srnamt = 'ZLATRS'
506 CALL zcopy( n, x, 1, b, 1 )
507 CALL zlatrs( uplo, trans, diag, 'N', n, a, lda, b,
508 $ scale, rwork, info )
509*
510* Check error code from ZLATRS.
511*
512 IF( info.NE.0 )
513 $ CALL alaerh( path, 'ZLATRS', info, 0,
514 $ uplo // trans // diag // 'N', n, n,
515 $ -1, -1, -1, imat, nfail, nerrs, nout )
516*
517 CALL ztrt03( uplo, trans, diag, n, 1, a, lda, scale,
518 $ rwork, one, b, lda, x, lda, work,
519 $ result( 8 ) )
520*
521*+ TEST 9
522* Solve op(A)*X = b again with NORMIN = 'Y'.
523*
524 CALL zcopy( n, x, 1, b( n+1 ), 1 )
525 CALL zlatrs( uplo, trans, diag, 'Y', n, a, lda,
526 $ b( n+1 ), scale, rwork, info )
527*
528* Check error code from ZLATRS.
529*
530 IF( info.NE.0 )
531 $ CALL alaerh( path, 'ZLATRS', info, 0,
532 $ uplo // trans // diag // 'Y', n, n,
533 $ -1, -1, -1, imat, nfail, nerrs, nout )
534*
535 CALL ztrt03( uplo, trans, diag, n, 1, a, lda, scale,
536 $ rwork, one, b( n+1 ), lda, x, lda, work,
537 $ result( 9 ) )
538*
539*+ TEST 10
540* Solve op(A)*X = B
541*
542 srnamt = 'ZLATRS3'
543 CALL zcopy( n, x, 1, b, 1 )
544 CALL zcopy( n, x, 1, b( n+1 ), 1 )
545 CALL zdscal( n, bignum, b( n+1 ), 1 )
546 CALL zlatrs3( uplo, trans, diag, 'N', n, 2, a, lda,
547 $ b, max(1, n), scale3, rwork, work, nmax,
548 $ info )
549*
550* Check error code from ZLATRS3.
551*
552 IF( info.NE.0 )
553 $ CALL alaerh( path, 'ZLATRS3', info, 0,
554 $ uplo // trans // diag // 'N', n, n,
555 $ -1, -1, -1, imat, nfail, nerrs, nout )
556 CALL ztrt03( uplo, trans, diag, n, 1, a, lda,
557 $ scale3( 1 ), rwork, one, b( 1 ), lda,
558 $ x, lda, work, result( 10 ) )
559 CALL zdscal( n, bignum, x, 1 )
560 CALL ztrt03( uplo, trans, diag, n, 1, a, lda,
561 $ scale3( 2 ), rwork, one, b( n+1 ), lda,
562 $ x, lda, work, res )
563 result( 10 ) = max( result( 10 ), res )
564*
565* Print information about the tests that did not pass
566* the threshold.
567*
568 IF( result( 8 ).GE.thresh ) THEN
569 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
570 $ CALL alahd( nout, path )
571 WRITE( nout, fmt = 9996 )'ZLATRS', uplo, trans,
572 $ diag, 'N', n, imat, 8, result( 8 )
573 nfail = nfail + 1
574 END IF
575 IF( result( 9 ).GE.thresh ) THEN
576 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
577 $ CALL alahd( nout, path )
578 WRITE( nout, fmt = 9996 )'ZLATRS', uplo, trans,
579 $ diag, 'Y', n, imat, 9, result( 9 )
580 nfail = nfail + 1
581 END IF
582 IF( result( 10 ).GE.thresh ) THEN
583 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
584 $ CALL alahd( nout, path )
585 WRITE( nout, fmt = 9996 )'ZLATRS3', uplo, trans,
586 $ diag, 'N', n, imat, 10, result( 10 )
587 nfail = nfail + 1
588 END IF
589 nrun = nrun + 3
590 90 CONTINUE
591 100 CONTINUE
592 110 CONTINUE
593 120 CONTINUE
594*
595* Print a summary of the results.
596*
597 CALL alasum( path, nout, nfail, nrun, nerrs )
598*
599 9999 FORMAT( ' UPLO=''', a1, ''', DIAG=''', a1, ''', N=', i5, ', NB=',
600 $ i4, ', type ', i2, ', test(', i2, ')= ', g12.5 )
601 9998 FORMAT( ' UPLO=''', a1, ''', TRANS=''', a1, ''', DIAG=''', a1,
602 $ ''', N=', i5, ', NB=', i4, ', type ', i2, ', test(',
603 $ i2, ')= ', g12.5 )
604 9997 FORMAT( ' NORM=''', a1, ''', UPLO =''', a1, ''', N=', i5, ',',
605 $ 11x, ' type ', i2, ', test(', i2, ')=', g12.5 )
606 9996 FORMAT( 1x, a, '( ''', a1, ''', ''', a1, ''', ''', a1, ''', ''',
607 $ a1, ''',', i5, ', ... ), type ', i2, ', test(', i2, ')=',
608 $ g12.5 )
609 RETURN
610*
611* End of ZCHKTR
612*
613 END
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:73
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:81
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:107
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:147
subroutine zdscal(N, DA, ZX, INCX)
ZDSCAL
Definition: zdscal.f:78
subroutine zcopy(N, ZX, INCX, ZY, INCY)
ZCOPY
Definition: zcopy.f:81
subroutine zlarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
ZLARHS
Definition: zlarhs.f:208
subroutine zchktr(DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL, THRESH, TSTERR, NMAX, A, AINV, B, X, XACT, WORK, RWORK, NOUT)
ZCHKTR
Definition: zchktr.f:163
subroutine zget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
ZGET04
Definition: zget04.f:102
subroutine ztrt06(RCOND, RCONDC, UPLO, DIAG, N, A, LDA, RWORK, RAT)
ZTRT06
Definition: ztrt06.f:122
subroutine ztrt03(UPLO, TRANS, DIAG, N, NRHS, A, LDA, SCALE, CNORM, TSCAL, X, LDX, B, LDB, WORK, RESID)
ZTRT03
Definition: ztrt03.f:171
subroutine ztrt01(UPLO, DIAG, N, A, LDA, AINV, LDAINV, RCOND, RWORK, RESID)
ZTRT01
Definition: ztrt01.f:125
subroutine ztrt05(UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS)
ZTRT05
Definition: ztrt05.f:182
subroutine zlattr(IMAT, UPLO, TRANS, DIAG, ISEED, N, A, LDA, B, WORK, RWORK, INFO)
ZLATTR
Definition: zlattr.f:138
subroutine zerrtr(PATH, NUNIT)
ZERRTR
Definition: zerrtr.f:54
subroutine ztrt02(UPLO, TRANS, DIAG, N, NRHS, A, LDA, X, LDX, B, LDB, WORK, RWORK, RESID)
ZTRT02
Definition: ztrt02.f:155
subroutine zlacpy(UPLO, M, N, A, LDA, B, LDB)
ZLACPY copies all or part of one two-dimensional array to another.
Definition: zlacpy.f:103
subroutine zlatrs(UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE, CNORM, INFO)
ZLATRS solves a triangular system of equations with the scale factor set to prevent overflow.
Definition: zlatrs.f:239
subroutine ztrtrs(UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, INFO)
ZTRTRS
Definition: ztrtrs.f:140
subroutine ztrcon(NORM, UPLO, DIAG, N, A, LDA, RCOND, WORK, RWORK, INFO)
ZTRCON
Definition: ztrcon.f:137
subroutine ztrrfs(UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO)
ZTRRFS
Definition: ztrrfs.f:182
subroutine ztrtri(UPLO, DIAG, N, A, LDA, INFO)
ZTRTRI
Definition: ztrtri.f:109
subroutine zlatrs3(UPLO, TRANS, DIAG, NORMIN, N, NRHS, A, LDA, X, LDX, SCALE, CNORM, WORK, LWORK, INFO)
ZLATRS3 solves a triangular system of equations with the scale factors set to prevent overflow.
Definition: zlatrs3.f:230