LAPACK  3.10.1
LAPACK: Linear Algebra PACKage
zchkpb.f
Go to the documentation of this file.
1 *> \brief \b ZCHKPB
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE ZCHKPB( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
12 * THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X,
13 * XACT, WORK, RWORK, NOUT )
14 *
15 * .. Scalar Arguments ..
16 * LOGICAL TSTERR
17 * INTEGER NMAX, NN, NNB, NNS, NOUT
18 * DOUBLE PRECISION THRESH
19 * ..
20 * .. Array Arguments ..
21 * LOGICAL DOTYPE( * )
22 * INTEGER NBVAL( * ), NSVAL( * ), NVAL( * )
23 * DOUBLE PRECISION RWORK( * )
24 * COMPLEX*16 A( * ), AFAC( * ), AINV( * ), B( * ),
25 * $ WORK( * ), X( * ), XACT( * )
26 * ..
27 *
28 *
29 *> \par Purpose:
30 * =============
31 *>
32 *> \verbatim
33 *>
34 *> ZCHKPB tests ZPBTRF, -TRS, -RFS, and -CON.
35 *> \endverbatim
36 *
37 * Arguments:
38 * ==========
39 *
40 *> \param[in] DOTYPE
41 *> \verbatim
42 *> DOTYPE is LOGICAL array, dimension (NTYPES)
43 *> The matrix types to be used for testing. Matrices of type j
44 *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
45 *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
46 *> \endverbatim
47 *>
48 *> \param[in] NN
49 *> \verbatim
50 *> NN is INTEGER
51 *> The number of values of N contained in the vector NVAL.
52 *> \endverbatim
53 *>
54 *> \param[in] NVAL
55 *> \verbatim
56 *> NVAL is INTEGER array, dimension (NN)
57 *> The values of the matrix dimension N.
58 *> \endverbatim
59 *>
60 *> \param[in] NNB
61 *> \verbatim
62 *> NNB is INTEGER
63 *> The number of values of NB contained in the vector NBVAL.
64 *> \endverbatim
65 *>
66 *> \param[in] NBVAL
67 *> \verbatim
68 *> NBVAL is INTEGER array, dimension (NNB)
69 *> The values of the blocksize NB.
70 *> \endverbatim
71 *>
72 *> \param[in] NNS
73 *> \verbatim
74 *> NNS is INTEGER
75 *> The number of values of NRHS contained in the vector NSVAL.
76 *> \endverbatim
77 *>
78 *> \param[in] NSVAL
79 *> \verbatim
80 *> NSVAL is INTEGER array, dimension (NNS)
81 *> The values of the number of right hand sides NRHS.
82 *> \endverbatim
83 *>
84 *> \param[in] THRESH
85 *> \verbatim
86 *> THRESH is DOUBLE PRECISION
87 *> The threshold value for the test ratios. A result is
88 *> included in the output file if RESULT >= THRESH. To have
89 *> every test ratio printed, use THRESH = 0.
90 *> \endverbatim
91 *>
92 *> \param[in] TSTERR
93 *> \verbatim
94 *> TSTERR is LOGICAL
95 *> Flag that indicates whether error exits are to be tested.
96 *> \endverbatim
97 *>
98 *> \param[in] NMAX
99 *> \verbatim
100 *> NMAX is INTEGER
101 *> The maximum value permitted for N, used in dimensioning the
102 *> work arrays.
103 *> \endverbatim
104 *>
105 *> \param[out] A
106 *> \verbatim
107 *> A is DOUBLE PRECISION array, dimension (NMAX*NMAX)
108 *> \endverbatim
109 *>
110 *> \param[out] AFAC
111 *> \verbatim
112 *> AFAC is DOUBLE PRECISION array, dimension (NMAX*NMAX)
113 *> \endverbatim
114 *>
115 *> \param[out] AINV
116 *> \verbatim
117 *> AINV is DOUBLE PRECISION array, dimension (NMAX*NMAX)
118 *> \endverbatim
119 *>
120 *> \param[out] B
121 *> \verbatim
122 *> B is DOUBLE PRECISION array, dimension (NMAX*NSMAX)
123 *> where NSMAX is the largest entry in NSVAL.
124 *> \endverbatim
125 *>
126 *> \param[out] X
127 *> \verbatim
128 *> X is DOUBLE PRECISION array, dimension (NMAX*NSMAX)
129 *> \endverbatim
130 *>
131 *> \param[out] XACT
132 *> \verbatim
133 *> XACT is DOUBLE PRECISION array, dimension (NMAX*NSMAX)
134 *> \endverbatim
135 *>
136 *> \param[out] WORK
137 *> \verbatim
138 *> WORK is DOUBLE PRECISION array, dimension
139 *> (NMAX*max(3,NSMAX))
140 *> \endverbatim
141 *>
142 *> \param[out] RWORK
143 *> \verbatim
144 *> RWORK is DOUBLE PRECISION array, dimension
145 *> (max(NMAX,2*NSMAX))
146 *> \endverbatim
147 *>
148 *> \param[in] NOUT
149 *> \verbatim
150 *> NOUT is INTEGER
151 *> The unit number for output.
152 *> \endverbatim
153 *
154 * Authors:
155 * ========
156 *
157 *> \author Univ. of Tennessee
158 *> \author Univ. of California Berkeley
159 *> \author Univ. of Colorado Denver
160 *> \author NAG Ltd.
161 *
162 *> \ingroup complex16_lin
163 *
164 * =====================================================================
165  SUBROUTINE zchkpb( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
166  $ THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X,
167  $ XACT, WORK, RWORK, NOUT )
168 *
169 * -- LAPACK test routine --
170 * -- LAPACK is a software package provided by Univ. of Tennessee, --
171 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
172 *
173 * .. Scalar Arguments ..
174  LOGICAL TSTERR
175  INTEGER NMAX, NN, NNB, NNS, NOUT
176  DOUBLE PRECISION THRESH
177 * ..
178 * .. Array Arguments ..
179  LOGICAL DOTYPE( * )
180  INTEGER NBVAL( * ), NSVAL( * ), NVAL( * )
181  DOUBLE PRECISION RWORK( * )
182  COMPLEX*16 A( * ), AFAC( * ), AINV( * ), B( * ),
183  $ work( * ), x( * ), xact( * )
184 * ..
185 *
186 * =====================================================================
187 *
188 * .. Parameters ..
189  DOUBLE PRECISION ONE, ZERO
190  PARAMETER ( ONE = 1.0d+0, zero = 0.0d+0 )
191  INTEGER NTYPES, NTESTS
192  parameter( ntypes = 8, ntests = 7 )
193  INTEGER NBW
194  parameter( nbw = 4 )
195 * ..
196 * .. Local Scalars ..
197  LOGICAL ZEROT
198  CHARACTER DIST, PACKIT, TYPE, UPLO, XTYPE
199  CHARACTER*3 PATH
200  INTEGER I, I1, I2, IKD, IMAT, IN, INB, INFO, IOFF,
201  $ irhs, iuplo, iw, izero, k, kd, kl, koff, ku,
202  $ lda, ldab, mode, n, nb, nerrs, nfail, nimat,
203  $ nkd, nrhs, nrun
204  DOUBLE PRECISION AINVNM, ANORM, CNDNUM, RCOND, RCONDC
205 * ..
206 * .. Local Arrays ..
207  INTEGER ISEED( 4 ), ISEEDY( 4 ), KDVAL( NBW )
208  DOUBLE PRECISION RESULT( NTESTS )
209 * ..
210 * .. External Functions ..
211  DOUBLE PRECISION DGET06, ZLANGE, ZLANHB
212  EXTERNAL DGET06, ZLANGE, ZLANHB
213 * ..
214 * .. External Subroutines ..
215  EXTERNAL alaerh, alahd, alasum, xlaenv, zcopy, zerrpo,
218  $ zpbtrf, zpbtrs, zswap
219 * ..
220 * .. Intrinsic Functions ..
221  INTRINSIC dcmplx, max, min
222 * ..
223 * .. Scalars in Common ..
224  LOGICAL LERR, OK
225  CHARACTER*32 SRNAMT
226  INTEGER INFOT, NUNIT
227 * ..
228 * .. Common blocks ..
229  COMMON / infoc / infot, nunit, ok, lerr
230  COMMON / srnamc / srnamt
231 * ..
232 * .. Data statements ..
233  DATA iseedy / 1988, 1989, 1990, 1991 /
234 * ..
235 * .. Executable Statements ..
236 *
237 * Initialize constants and the random number seed.
238 *
239  path( 1: 1 ) = 'Zomplex precision'
240  path( 2: 3 ) = 'PB'
241  nrun = 0
242  nfail = 0
243  nerrs = 0
244  DO 10 i = 1, 4
245  iseed( i ) = iseedy( i )
246  10 CONTINUE
247 *
248 * Test the error exits
249 *
250  IF( tsterr )
251  $ CALL zerrpo( path, nout )
252  infot = 0
253  kdval( 1 ) = 0
254 *
255 * Do for each value of N in NVAL
256 *
257  DO 90 in = 1, nn
258  n = nval( in )
259  lda = max( n, 1 )
260  xtype = 'N'
261 *
262 * Set limits on the number of loop iterations.
263 *
264  nkd = max( 1, min( n, 4 ) )
265  nimat = ntypes
266  IF( n.EQ.0 )
267  $ nimat = 1
268 *
269  kdval( 2 ) = n + ( n+1 ) / 4
270  kdval( 3 ) = ( 3*n-1 ) / 4
271  kdval( 4 ) = ( n+1 ) / 4
272 *
273  DO 80 ikd = 1, nkd
274 *
275 * Do for KD = 0, (5*N+1)/4, (3N-1)/4, and (N+1)/4. This order
276 * makes it easier to skip redundant values for small values
277 * of N.
278 *
279  kd = kdval( ikd )
280  ldab = kd + 1
281 *
282 * Do first for UPLO = 'U', then for UPLO = 'L'
283 *
284  DO 70 iuplo = 1, 2
285  koff = 1
286  IF( iuplo.EQ.1 ) THEN
287  uplo = 'U'
288  koff = max( 1, kd+2-n )
289  packit = 'Q'
290  ELSE
291  uplo = 'L'
292  packit = 'B'
293  END IF
294 *
295  DO 60 imat = 1, nimat
296 *
297 * Do the tests only if DOTYPE( IMAT ) is true.
298 *
299  IF( .NOT.dotype( imat ) )
300  $ GO TO 60
301 *
302 * Skip types 2, 3, or 4 if the matrix size is too small.
303 *
304  zerot = imat.GE.2 .AND. imat.LE.4
305  IF( zerot .AND. n.LT.imat-1 )
306  $ GO TO 60
307 *
308  IF( .NOT.zerot .OR. .NOT.dotype( 1 ) ) THEN
309 *
310 * Set up parameters with ZLATB4 and generate a test
311 * matrix with ZLATMS.
312 *
313  CALL zlatb4( path, imat, n, n, TYPE, kl, ku, anorm,
314  $ mode, cndnum, dist )
315 *
316  srnamt = 'ZLATMS'
317  CALL zlatms( n, n, dist, iseed, TYPE, rwork, mode,
318  $ cndnum, anorm, kd, kd, packit,
319  $ a( koff ), ldab, work, info )
320 *
321 * Check error code from ZLATMS.
322 *
323  IF( info.NE.0 ) THEN
324  CALL alaerh( path, 'ZLATMS', info, 0, uplo, n,
325  $ n, kd, kd, -1, imat, nfail, nerrs,
326  $ nout )
327  GO TO 60
328  END IF
329  ELSE IF( izero.GT.0 ) THEN
330 *
331 * Use the same matrix for types 3 and 4 as for type
332 * 2 by copying back the zeroed out column,
333 *
334  iw = 2*lda + 1
335  IF( iuplo.EQ.1 ) THEN
336  ioff = ( izero-1 )*ldab + kd + 1
337  CALL zcopy( izero-i1, work( iw ), 1,
338  $ a( ioff-izero+i1 ), 1 )
339  iw = iw + izero - i1
340  CALL zcopy( i2-izero+1, work( iw ), 1,
341  $ a( ioff ), max( ldab-1, 1 ) )
342  ELSE
343  ioff = ( i1-1 )*ldab + 1
344  CALL zcopy( izero-i1, work( iw ), 1,
345  $ a( ioff+izero-i1 ),
346  $ max( ldab-1, 1 ) )
347  ioff = ( izero-1 )*ldab + 1
348  iw = iw + izero - i1
349  CALL zcopy( i2-izero+1, work( iw ), 1,
350  $ a( ioff ), 1 )
351  END IF
352  END IF
353 *
354 * For types 2-4, zero one row and column of the matrix
355 * to test that INFO is returned correctly.
356 *
357  izero = 0
358  IF( zerot ) THEN
359  IF( imat.EQ.2 ) THEN
360  izero = 1
361  ELSE IF( imat.EQ.3 ) THEN
362  izero = n
363  ELSE
364  izero = n / 2 + 1
365  END IF
366 *
367 * Save the zeroed out row and column in WORK(*,3)
368 *
369  iw = 2*lda
370  DO 20 i = 1, min( 2*kd+1, n )
371  work( iw+i ) = zero
372  20 CONTINUE
373  iw = iw + 1
374  i1 = max( izero-kd, 1 )
375  i2 = min( izero+kd, n )
376 *
377  IF( iuplo.EQ.1 ) THEN
378  ioff = ( izero-1 )*ldab + kd + 1
379  CALL zswap( izero-i1, a( ioff-izero+i1 ), 1,
380  $ work( iw ), 1 )
381  iw = iw + izero - i1
382  CALL zswap( i2-izero+1, a( ioff ),
383  $ max( ldab-1, 1 ), work( iw ), 1 )
384  ELSE
385  ioff = ( i1-1 )*ldab + 1
386  CALL zswap( izero-i1, a( ioff+izero-i1 ),
387  $ max( ldab-1, 1 ), work( iw ), 1 )
388  ioff = ( izero-1 )*ldab + 1
389  iw = iw + izero - i1
390  CALL zswap( i2-izero+1, a( ioff ), 1,
391  $ work( iw ), 1 )
392  END IF
393  END IF
394 *
395 * Set the imaginary part of the diagonals.
396 *
397  IF( iuplo.EQ.1 ) THEN
398  CALL zlaipd( n, a( kd+1 ), ldab, 0 )
399  ELSE
400  CALL zlaipd( n, a( 1 ), ldab, 0 )
401  END IF
402 *
403 * Do for each value of NB in NBVAL
404 *
405  DO 50 inb = 1, nnb
406  nb = nbval( inb )
407  CALL xlaenv( 1, nb )
408 *
409 * Compute the L*L' or U'*U factorization of the band
410 * matrix.
411 *
412  CALL zlacpy( 'Full', kd+1, n, a, ldab, afac, ldab )
413  srnamt = 'ZPBTRF'
414  CALL zpbtrf( uplo, n, kd, afac, ldab, info )
415 *
416 * Check error code from ZPBTRF.
417 *
418  IF( info.NE.izero ) THEN
419  CALL alaerh( path, 'ZPBTRF', info, izero, uplo,
420  $ n, n, kd, kd, nb, imat, nfail,
421  $ nerrs, nout )
422  GO TO 50
423  END IF
424 *
425 * Skip the tests if INFO is not 0.
426 *
427  IF( info.NE.0 )
428  $ GO TO 50
429 *
430 *+ TEST 1
431 * Reconstruct matrix from factors and compute
432 * residual.
433 *
434  CALL zlacpy( 'Full', kd+1, n, afac, ldab, ainv,
435  $ ldab )
436  CALL zpbt01( uplo, n, kd, a, ldab, ainv, ldab,
437  $ rwork, result( 1 ) )
438 *
439 * Print the test ratio if it is .GE. THRESH.
440 *
441  IF( result( 1 ).GE.thresh ) THEN
442  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
443  $ CALL alahd( nout, path )
444  WRITE( nout, fmt = 9999 )uplo, n, kd, nb, imat,
445  $ 1, result( 1 )
446  nfail = nfail + 1
447  END IF
448  nrun = nrun + 1
449 *
450 * Only do other tests if this is the first blocksize.
451 *
452  IF( inb.GT.1 )
453  $ GO TO 50
454 *
455 * Form the inverse of A so we can get a good estimate
456 * of RCONDC = 1/(norm(A) * norm(inv(A))).
457 *
458  CALL zlaset( 'Full', n, n, dcmplx( zero ),
459  $ dcmplx( one ), ainv, lda )
460  srnamt = 'ZPBTRS'
461  CALL zpbtrs( uplo, n, kd, n, afac, ldab, ainv, lda,
462  $ info )
463 *
464 * Compute RCONDC = 1/(norm(A) * norm(inv(A))).
465 *
466  anorm = zlanhb( '1', uplo, n, kd, a, ldab, rwork )
467  ainvnm = zlange( '1', n, n, ainv, lda, rwork )
468  IF( anorm.LE.zero .OR. ainvnm.LE.zero ) THEN
469  rcondc = one
470  ELSE
471  rcondc = ( one / anorm ) / ainvnm
472  END IF
473 *
474  DO 40 irhs = 1, nns
475  nrhs = nsval( irhs )
476 *
477 *+ TEST 2
478 * Solve and compute residual for A * X = B.
479 *
480  srnamt = 'ZLARHS'
481  CALL zlarhs( path, xtype, uplo, ' ', n, n, kd,
482  $ kd, nrhs, a, ldab, xact, lda, b,
483  $ lda, iseed, info )
484  CALL zlacpy( 'Full', n, nrhs, b, lda, x, lda )
485 *
486  srnamt = 'ZPBTRS'
487  CALL zpbtrs( uplo, n, kd, nrhs, afac, ldab, x,
488  $ lda, info )
489 *
490 * Check error code from ZPBTRS.
491 *
492  IF( info.NE.0 )
493  $ CALL alaerh( path, 'ZPBTRS', info, 0, uplo,
494  $ n, n, kd, kd, nrhs, imat, nfail,
495  $ nerrs, nout )
496 *
497  CALL zlacpy( 'Full', n, nrhs, b, lda, work,
498  $ lda )
499  CALL zpbt02( uplo, n, kd, nrhs, a, ldab, x, lda,
500  $ work, lda, rwork, result( 2 ) )
501 *
502 *+ TEST 3
503 * Check solution from generated exact solution.
504 *
505  CALL zget04( n, nrhs, x, lda, xact, lda, rcondc,
506  $ result( 3 ) )
507 *
508 *+ TESTS 4, 5, and 6
509 * Use iterative refinement to improve the solution.
510 *
511  srnamt = 'ZPBRFS'
512  CALL zpbrfs( uplo, n, kd, nrhs, a, ldab, afac,
513  $ ldab, b, lda, x, lda, rwork,
514  $ rwork( nrhs+1 ), work,
515  $ rwork( 2*nrhs+1 ), info )
516 *
517 * Check error code from ZPBRFS.
518 *
519  IF( info.NE.0 )
520  $ CALL alaerh( path, 'ZPBRFS', info, 0, uplo,
521  $ n, n, kd, kd, nrhs, imat, nfail,
522  $ nerrs, nout )
523 *
524  CALL zget04( n, nrhs, x, lda, xact, lda, rcondc,
525  $ result( 4 ) )
526  CALL zpbt05( uplo, n, kd, nrhs, a, ldab, b, lda,
527  $ x, lda, xact, lda, rwork,
528  $ rwork( nrhs+1 ), result( 5 ) )
529 *
530 * Print information about the tests that did not
531 * pass the threshold.
532 *
533  DO 30 k = 2, 6
534  IF( result( k ).GE.thresh ) THEN
535  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
536  $ CALL alahd( nout, path )
537  WRITE( nout, fmt = 9998 )uplo, n, kd,
538  $ nrhs, imat, k, result( k )
539  nfail = nfail + 1
540  END IF
541  30 CONTINUE
542  nrun = nrun + 5
543  40 CONTINUE
544 *
545 *+ TEST 7
546 * Get an estimate of RCOND = 1/CNDNUM.
547 *
548  srnamt = 'ZPBCON'
549  CALL zpbcon( uplo, n, kd, afac, ldab, anorm, rcond,
550  $ work, rwork, info )
551 *
552 * Check error code from ZPBCON.
553 *
554  IF( info.NE.0 )
555  $ CALL alaerh( path, 'ZPBCON', info, 0, uplo, n,
556  $ n, kd, kd, -1, imat, nfail, nerrs,
557  $ nout )
558 *
559  result( 7 ) = dget06( rcond, rcondc )
560 *
561 * Print the test ratio if it is .GE. THRESH.
562 *
563  IF( result( 7 ).GE.thresh ) THEN
564  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
565  $ CALL alahd( nout, path )
566  WRITE( nout, fmt = 9997 )uplo, n, kd, imat, 7,
567  $ result( 7 )
568  nfail = nfail + 1
569  END IF
570  nrun = nrun + 1
571  50 CONTINUE
572  60 CONTINUE
573  70 CONTINUE
574  80 CONTINUE
575  90 CONTINUE
576 *
577 * Print a summary of the results.
578 *
579  CALL alasum( path, nout, nfail, nrun, nerrs )
580 *
581  9999 FORMAT( ' UPLO=''', a1, ''', N=', i5, ', KD=', i5, ', NB=', i4,
582  $ ', type ', i2, ', test ', i2, ', ratio= ', g12.5 )
583  9998 FORMAT( ' UPLO=''', a1, ''', N=', i5, ', KD=', i5, ', NRHS=', i3,
584  $ ', type ', i2, ', test(', i2, ') = ', g12.5 )
585  9997 FORMAT( ' UPLO=''', a1, ''', N=', i5, ', KD=', i5, ',', 10x,
586  $ ' type ', i2, ', test(', i2, ') = ', g12.5 )
587  RETURN
588 *
589 * End of ZCHKPB
590 *
591  END
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:73
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:81
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:107
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:147
subroutine zswap(N, ZX, INCX, ZY, INCY)
ZSWAP
Definition: zswap.f:81
subroutine zcopy(N, ZX, INCX, ZY, INCY)
ZCOPY
Definition: zcopy.f:81
subroutine zlarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
ZLARHS
Definition: zlarhs.f:208
subroutine zpbt05(UPLO, N, KD, NRHS, AB, LDAB, B, LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS)
ZPBT05
Definition: zpbt05.f:171
subroutine zget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
ZGET04
Definition: zget04.f:102
subroutine zpbt02(UPLO, N, KD, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
ZPBT02
Definition: zpbt02.f:136
subroutine zlaipd(N, A, INDA, VINDA)
ZLAIPD
Definition: zlaipd.f:83
subroutine zerrpo(PATH, NUNIT)
ZERRPO
Definition: zerrpo.f:55
subroutine zpbt01(UPLO, N, KD, A, LDA, AFAC, LDAFAC, RWORK, RESID)
ZPBT01
Definition: zpbt01.f:120
subroutine zchkpb(DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL, THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X, XACT, WORK, RWORK, NOUT)
ZCHKPB
Definition: zchkpb.f:168
subroutine zlatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
ZLATB4
Definition: zlatb4.f:121
subroutine zlatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
ZLATMS
Definition: zlatms.f:332
subroutine zlacpy(UPLO, M, N, A, LDA, B, LDB)
ZLACPY copies all or part of one two-dimensional array to another.
Definition: zlacpy.f:103
subroutine zlaset(UPLO, M, N, ALPHA, BETA, A, LDA)
ZLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition: zlaset.f:106
subroutine zpbcon(UPLO, N, KD, AB, LDAB, ANORM, RCOND, WORK, RWORK, INFO)
ZPBCON
Definition: zpbcon.f:133
subroutine zpbrfs(UPLO, N, KD, NRHS, AB, LDAB, AFB, LDAFB, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO)
ZPBRFS
Definition: zpbrfs.f:189
subroutine zpbtrf(UPLO, N, KD, AB, LDAB, INFO)
ZPBTRF
Definition: zpbtrf.f:142
subroutine zpbtrs(UPLO, N, KD, NRHS, AB, LDAB, B, LDB, INFO)
ZPBTRS
Definition: zpbtrs.f:121