### Source code archives

Documentation for single precision library.
Documentation for double precision library.
Documentation for 80-bit long double library.
Documentation for 128-bit long double library.
Documentation for extended precision library.

### Long Double Precision Special Functions

Select function name for additional information. For other precisions, see the archives and descriptions listed above.
• acoshl, Inverse hyperbolic cosine
• arcdotl, Angle between two vectors
• asinh, Inverse hyperbolic sine
• asin, Inverse circular sine
• acos, Inverse circular cosine
• atanh, Inverse hyperbolic tangent
• atan, Inverse circular tangent
• atan2, Quadrant correct inverse circular tangent
• bdtr, Binomial distribution
• bdtrc, Complemented binomial distribution
• bdtri, Inverse binomial distribution
• btdtr, Beta distribution
• cbrt, Cube root
• chdtr, Chi-square distribution
• chdtrc, Complemented Chi-square distribution
• chdtri, Inverse of complemented Chi-square distribution
• clog, Complex natural logarithm
• cexp, Complex exponential function
• csin, Complex circular sine
• ccos, Complex circular cosine
• ctan, Complex circular tangent
• ccot, Complex circular cotangent
• casin, Complex circular arc sine
• cacos, Complex circular arc cosine
• catan, Complex circular arc tangent
• cmplx, Complex number arithmetic
• cosh, Hyperbolic cosine
• ellie, Incomplete elliptic integral of the second kind
• ellik, Incomplete elliptic integral of the first kind
• ellpe, Complete elliptic integral of the second kind
• ellpj, Jacobian elliptic functions
• ellpk, Complete elliptic integral of the first kind
• exp10, Base 10 exponential function
• exp2, Base 2 exponential function
• exp, Exponential function
• expm1, Exponential function, minus 1
• expx2, Exponential function
• fdtr, F distribution
• fdtrc, Complemented F distribution
• fdtri, Inverse of complemented F distribution
• floor, Floor function
• ceil, Ceil function
• frexp, Extract exponent
• ldexp, Apply exponent
• fabs, Absolute value
• gamma, Gamma function
• lgam, Natural logarithm of gamma function
• gdtr, Gamma distribution function
• gdtrc, Complemented gamma distribution function
• gels, Linear system with symmetric coefficient matrix
• hyperg, Confluent hypergeometric function
• ieee, Extended precision arithmetic
• igami, Inverse of complemented imcomplete gamma integral
• igam, Incomplete gamma integral
• igamc, Complemented incomplete gamma integral
• incbet, Incomplete beta integral
• incbi, Inverse of imcomplete beta integral
• isnan, Test for not a number
• isfinite, Test for infinity
• signbit, Extract sign
• j0, Bessel function of order zero
• y0, Bessel function of the second kind, order zero
• j1, Bessel function of order one
• y1, Bessel function of the second kind, order one
• jn, Bessel function of integer order
• ldrand, Pseudorandom number generator
• log10, Common logarithm
• log1p, Relative error logarithm
• log2, Base 2 logarithm
• log, Natural logarithm
• mtherr, Library common error handling routine
• nbdtr, Negative binomial distribution
• nbdtrc, Complemented negative binomial distribution
• nbdtri, Functional inverse of negative binomial distribution
• ndtri, Inverse of normal distribution function
• ndtr, Normal distribution function
• erf, Error function
• erfc, Complementary error function
• pdtr, Poisson distribution function
• pdtrc, Complemented Poisson distribution function
• pdtri, Inverse of Poisson distribution function
• polevl, Evaluate polynomial
• p1evl, Evaluate polynomial
• powi, Integer power function
• pow, Power function
• sinh, Hyperbolic sine
• sin, Circular sine
• cos, Circular cosine
• sqrt, Square root
• stdtr, Student's t distribution
• stdtri, Functional inverse of Student's t distribution
• tanh, Hyperbolic tangent
• tan, Circular tangent
• cot, Circular cotangent
• cosm1, Relative error cosine
• yn, Bessel function of second kind of integer order
•
```/*							acoshl.c
*
*	Inverse hyperbolic cosine, long double precision
*
*
*
* SYNOPSIS:
*
* long double x, y, acoshl();
*
* y = acoshl( x );
*
*
*
* DESCRIPTION:
*
* Returns inverse hyperbolic cosine of argument.
*
* If 1 <= x < 1.5, a rational approximation
*
*	sqrt(2z) * P(z)/Q(z)
*
* where z = x-1, is used.  Otherwise,
*
* acosh(x)  =  log( x + sqrt( (x-1)(x+1) ).
*
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    IEEE      1,3         30000       2.0e-19     3.9e-20
*
*
* ERROR MESSAGES:
*
*   message         condition      value returned
* acoshl domain      |x| < 1            0.0
*
*/
```

```/*							arcdot.c
*
*	Angle between two vectors
*
*
*
*
* SYNOPSIS:
*
* long double p, q, arcdotl();
*
* y = arcdotl( p, q );
*
*
*
* DESCRIPTION:
*
* For two vectors p, q, the angle A between them is given by
*
*      p.q / (|p| |q|)  = cos A  .
*
* where "." represents inner product, "|x|" the length of vector x.
* If the angle is small, an expression in sin A is preferred.
* Set r = q - p.  Then
*
*     p.q = p.p + p.r ,
*
*     |p|^2 = p.p ,
*
*     |q|^2 = p.p + 2 p.r + r.r ,
*
*                  p.p^2 + 2 p.p p.r + p.r^2
*     cos^2 A  =  ----------------------------
*                    p.p (p.p + 2 p.r + r.r)
*
*                  p.p + 2 p.r + p.r^2 / p.p
*              =  --------------------------- ,
*                     p.p + 2 p.r + r.r
*
*     sin^2 A  =  1 - cos^2 A
*
*                   r.r - p.r^2 / p.p
*              =  --------------------
*                  p.p + 2 p.r + r.r
*
*              =   (r.r - p.r^2 / p.p) / q.q  .
*
* ACCURACY:
*
* About 1 ULP.  See arcdot.c.
*
*/
```

```/*							asinhl.c
*
*	Inverse hyperbolic sine, long double precision
*
*
*
* SYNOPSIS:
*
* long double x, y, asinhl();
*
* y = asinhl( x );
*
*
*
* DESCRIPTION:
*
* Returns inverse hyperbolic sine of argument.
*
* If |x| < 0.5, the function is approximated by a rational
* form  x + x**3 P(x)/Q(x).  Otherwise,
*
*     asinh(x) = log( x + sqrt(1 + x*x) ).
*
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    IEEE     -3,3         30000       1.7e-19     3.5e-20
*
*/
```

```/*							asinl.c
*
*	Inverse circular sine, long double precision
*
*
*
* SYNOPSIS:
*
* double x, y, asinl();
*
* y = asinl( x );
*
*
*
* DESCRIPTION:
*
* Returns radian angle between -pi/2 and +pi/2 whose sine is x.
*
* A rational function of the form x + x**3 P(x**2)/Q(x**2)
* is used for |x| in the interval [0, 0.5].  If |x| > 0.5 it is
* transformed by the identity
*
*    asin(x) = pi/2 - 2 asin( sqrt( (1-x)/2 ) ).
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    IEEE     -1, 1        30000       2.7e-19     4.8e-20
*
*
* ERROR MESSAGES:
*
*   message         condition      value returned
* asinl domain        |x| > 1           NANL
*
*/
```

```/*							acosl()
*
*	Inverse circular cosine, long double precision
*
*
*
* SYNOPSIS:
*
* double x, y, acosl();
*
* y = acosl( x );
*
*
*
* DESCRIPTION:
*
* Returns radian angle between -pi/2 and +pi/2 whose cosine
* is x.
*
* Analytically, acos(x) = pi/2 - asin(x).  However if |x| is
* near 1, there is cancellation error in subtracting asin(x)
* from pi/2.  Hence if x < -0.5,
*
*    acos(x) =	 pi - 2.0 * asin( sqrt((1+x)/2) );
*
* or if x > +0.5,
*
*    acos(x) =	 2.0 * asin(  sqrt((1-x)/2) ).
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    IEEE      -1, 1       30000       1.4e-19     3.5e-20
*
*
* ERROR MESSAGES:
*
*   message         condition      value returned
* acosl domain        |x| > 1           NANL
*/
```

```/*							atanhl.c
*
*	Inverse hyperbolic tangent, long double precision
*
*
*
* SYNOPSIS:
*
* long double x, y, atanhl();
*
* y = atanhl( x );
*
*
*
* DESCRIPTION:
*
* Returns inverse hyperbolic tangent of argument in the range
* MINLOGL to MAXLOGL.
*
* If |x| < 0.5, the rational form x + x**3 P(x)/Q(x) is
* employed.  Otherwise,
*        atanh(x) = 0.5 * log( (1+x)/(1-x) ).
*
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    IEEE      -1,1        30000       1.1e-19     3.3e-20
*
*/
```

```/*							atanl.c
*
*	Inverse circular tangent, long double precision
*      (arctangent)
*
*
*
* SYNOPSIS:
*
* long double x, y, atanl();
*
* y = atanl( x );
*
*
*
* DESCRIPTION:
*
* Returns radian angle between -pi/2 and +pi/2 whose tangent
* is x.
*
* Range reduction is from four intervals into the interval
* from zero to  tan( pi/8 ).  The approximant uses a rational
* function of degree 3/4 of the form x + x**3 P(x)/Q(x).
*
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    IEEE      -10, 10    150000       1.3e-19     3.0e-20
*
*/
```

```/*							atan2l()
*
*	Quadrant correct inverse circular tangent,
*	long double precision
*
*
*
* SYNOPSIS:
*
* long double x, y, z, atan2l();
*
* z = atan2l( y, x );
*
*
*
* DESCRIPTION:
*
* Returns radian angle whose tangent is y/x.
* Define compile time symbol ANSIC = 1 for ANSI standard,
* range -PI < z <= +PI, args (y,x); else ANSIC = 0 for range
* 0 to 2PI, args (x,y).
*
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    IEEE      -10, 10     60000       1.7e-19     3.2e-20
* See atan.c.
*
*/
```

```/*							bdtrl.c
*
*	Binomial distribution
*
*
*
* SYNOPSIS:
*
* int k, n;
* long double p, y, bdtrl();
*
* y = bdtrl( k, n, p );
*
*
*
* DESCRIPTION:
*
* Returns the sum of the terms 0 through k of the Binomial
* probability density:
*
*   k
*   --  ( n )   j      n-j
*   >   (   )  p  (1-p)
*   --  ( j )
*  j=0
*
* The terms are not summed directly; instead the incomplete
* beta integral is employed, according to the formula
*
* y = bdtr( k, n, p ) = incbet( n-k, k+1, 1-p ).
*
* The arguments must be positive, with p ranging from 0 to 1.
*
*
*
* ACCURACY:
*
* Tested at random points (k,n,p) with a and b between 0
* and 10000 and p between 0 and 1.
*    Relative error:
* arithmetic   domain     # trials      peak         rms
*    IEEE      0,10000      3000       1.6e-14     2.2e-15
*
* ERROR MESSAGES:
*
*   message         condition      value returned
* bdtrl domain        k < 0            0.0
*                     n < k
*                     x < 0, x > 1
*
*/
```

```/*							bdtrcl()
*
*	Complemented binomial distribution
*
*
*
* SYNOPSIS:
*
* int k, n;
* long double p, y, bdtrcl();
*
* y = bdtrcl( k, n, p );
*
*
*
* DESCRIPTION:
*
* Returns the sum of the terms k+1 through n of the Binomial
* probability density:
*
*   n
*   --  ( n )   j      n-j
*   >   (   )  p  (1-p)
*   --  ( j )
*  j=k+1
*
* The terms are not summed directly; instead the incomplete
* beta integral is employed, according to the formula
*
* y = bdtrc( k, n, p ) = incbet( k+1, n-k, p ).
*
* The arguments must be positive, with p ranging from 0 to 1.
*
*
*
* ACCURACY:
*
* See incbet.c.
*
* ERROR MESSAGES:
*
*   message         condition      value returned
* bdtrcl domain     x<0, x>1, n<k       0.0
*/
```

```/*							bdtril()
*
*	Inverse binomial distribution
*
*
*
* SYNOPSIS:
*
* int k, n;
* long double p, y, bdtril();
*
* p = bdtril( k, n, y );
*
*
*
* DESCRIPTION:
*
* Finds the event probability p such that the sum of the
* terms 0 through k of the Binomial probability density
* is equal to the given cumulative probability y.
*
* This is accomplished using the inverse beta integral
* function and the relation
*
* 1 - p = incbi( n-k, k+1, y ).
*
* ACCURACY:
*
* See incbi.c.
* Tested at random k, n between 1 and 10000.  The "domain" refers to p:
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    IEEE       0,1        3500       2.0e-15     8.2e-17
*
* ERROR MESSAGES:
*
*   message         condition      value returned
* bdtril domain     k < 0, n <= k         0.0
*                  x < 0, x > 1
*/
```

```/*							btdtrl.c
*
*	Beta distribution
*
*
*
* SYNOPSIS:
*
* long double a, b, x, y, btdtrl();
*
* y = btdtrl( a, b, x );
*
*
*
* DESCRIPTION:
*
* Returns the area from zero to x under the beta density
* function:
*
*
*                          x
*            -             -
*           | (a+b)       | |  a-1      b-1
* P(x)  =  ----------     |   t    (1-t)    dt
*           -     -     | |
*          | (a) | (b)   -
*                         0
*
*
* The mean value of this distribution is a/(a+b).  The variance
* is ab/[(a+b)^2 (a+b+1)].
*
* This function is identical to the incomplete beta integral
* function, incbetl(a, b, x).
*
* The complemented function is
*
* 1 - P(1-x)  =  incbetl( b, a, x );
*
*
* ACCURACY:
*
* See incbetl.c.
*
*/
```

```/*							cbrtl.c
*
*	Cube root, long double precision
*
*
*
* SYNOPSIS:
*
* long double x, y, cbrtl();
*
* y = cbrtl( x );
*
*
*
* DESCRIPTION:
*
* Returns the cube root of the argument, which may be negative.
*
* Range reduction involves determining the power of 2 of
* the argument.  A polynomial of degree 2 applied to the
* mantissa, and multiplication by the cube root of 1, 2, or 4
* approximates the root to within about 0.1%.  Then Newton's
* iteration is used three times to converge to an accurate
* result.
*
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    IEEE     .125,8        80000      7.0e-20     2.2e-20
*    IEEE    exp(+-707)    100000      7.0e-20     2.4e-20
*
*/
```

```/*							chdtrl.c
*
*	Chi-square distribution
*
*
*
* SYNOPSIS:
*
* long double df, x, y, chdtrl();
*
* y = chdtrl( df, x );
*
*
*
* DESCRIPTION:
*
* Returns the area under the left hand tail (from 0 to x)
* of the Chi square probability density function with
* v degrees of freedom.
*
*
*                                  inf.
*                                    -
*                        1          | |  v/2-1  -t/2
*  P( x | v )   =   -----------     |   t      e     dt
*                    v/2  -       | |
*                   2    | (v/2)   -
*                                   x
*
* where x is the Chi-square variable.
*
* The incomplete gamma integral is used, according to the
* formula
*
*	y = chdtr( v, x ) = igam( v/2.0, x/2.0 ).
*
*
* The arguments must both be positive.
*
*
*
* ACCURACY:
*
* See igam().
*
* ERROR MESSAGES:
*
*   message         condition      value returned
* chdtr domain   x < 0 or v < 1        0.0
*/
```

```/*							chdtrcl()
*
*	Complemented Chi-square distribution
*
*
*
* SYNOPSIS:
*
* long double v, x, y, chdtrcl();
*
* y = chdtrcl( v, x );
*
*
*
* DESCRIPTION:
*
* Returns the area under the right hand tail (from x to
* infinity) of the Chi square probability density function
* with v degrees of freedom:
*
*
*                                  inf.
*                                    -
*                        1          | |  v/2-1  -t/2
*  P( x | v )   =   -----------     |   t      e     dt
*                    v/2  -       | |
*                   2    | (v/2)   -
*                                   x
*
* where x is the Chi-square variable.
*
* The incomplete gamma integral is used, according to the
* formula
*
*	y = chdtr( v, x ) = igamc( v/2.0, x/2.0 ).
*
*
* The arguments must both be positive.
*
*
*
* ACCURACY:
*
* See igamc().
*
* ERROR MESSAGES:
*
*   message         condition      value returned
* chdtrc domain  x < 0 or v < 1        0.0
*/
```

```/*							chdtril()
*
*	Inverse of complemented Chi-square distribution
*
*
*
* SYNOPSIS:
*
* long double df, x, y, chdtril();
*
* x = chdtril( df, y );
*
*
*
*
* DESCRIPTION:
*
* Finds the Chi-square argument x such that the integral
* from x to infinity of the Chi-square density is equal
* to the given cumulative probability y.
*
* This is accomplished using the inverse gamma integral
* function and the relation
*
*    x/2 = igami( df/2, y );
*
*
*
*
* ACCURACY:
*
* See igami.c.
*
* ERROR MESSAGES:
*
*   message         condition      value returned
* chdtri domain   y < 0 or y > 1        0.0
*                     v < 1
*
*/
```

```/*							clogl.c
*
*	Complex natural logarithm
*
*
*
* SYNOPSIS:
*
* void clogl();
* cmplxl z, w;
*
* clogl( &z, &w );
*
*
*
* DESCRIPTION:
*
* Returns complex logarithm to the base e (2.718...) of
* the complex argument x.
*
* If z = x + iy, r = sqrt( x**2 + y**2 ),
* then
*       w = log(r) + i arctan(y/x).
*
* The arctangent ranges from -PI to +PI.
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    DEC       -10,+10      7000       8.5e-17     1.9e-17
*    IEEE      -10,+10     30000       5.0e-15     1.1e-16
*
* Larger relative error can be observed for z near 1 +i0.
* In IEEE arithmetic the peak absolute error is 5.2e-16, rms
* absolute error 1.0e-16.
*/
```

```/*							cexpl()
*
*	Complex exponential function
*
*
*
* SYNOPSIS:
*
* void cexpl();
* cmplxl z, w;
*
* cexpl( &z, &w );
*
*
*
* DESCRIPTION:
*
* Returns the exponential of the complex argument z
* into the complex result w.
*
* If
*     z = x + iy,
*     r = exp(x),
*
* then
*
*     w = r cos y + i r sin y.
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    DEC       -10,+10      8700       3.7e-17     1.1e-17
*    IEEE      -10,+10     30000       3.0e-16     8.7e-17
*
*/
```

```/*							csinl()
*
*	Complex circular sine
*
*
*
* SYNOPSIS:
*
* void csinl();
* cmplxl z, w;
*
* csinl( &z, &w );
*
*
*
* DESCRIPTION:
*
* If
*     z = x + iy,
*
* then
*
*     w = sin x  cosh y  +  i cos x sinh y.
*
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    DEC       -10,+10      8400       5.3e-17     1.3e-17
*    IEEE      -10,+10     30000       3.8e-16     1.0e-16
* Also tested by csin(casin(z)) = z.
*
*/
```

```/*							ccosl()
*
*	Complex circular cosine
*
*
*
* SYNOPSIS:
*
* void ccosl();
* cmplxl z, w;
*
* ccosl( &z, &w );
*
*
*
* DESCRIPTION:
*
* If
*     z = x + iy,
*
* then
*
*     w = cos x  cosh y  -  i sin x sinh y.
*
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    DEC       -10,+10      8400       4.5e-17     1.3e-17
*    IEEE      -10,+10     30000       3.8e-16     1.0e-16
*/
```

```/*							ctanl()
*
*	Complex circular tangent
*
*
*
* SYNOPSIS:
*
* void ctanl();
* cmplxl z, w;
*
* ctanl( &z, &w );
*
*
*
* DESCRIPTION:
*
* If
*     z = x + iy,
*
* then
*
*           sin 2x  +  i sinh 2y
*     w  =  --------------------.
*            cos 2x  +  cosh 2y
*
* On the real axis the denominator is zero at odd multiples
* of PI/2.  The denominator is evaluated by its Taylor
* series near these points.
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    DEC       -10,+10      5200       7.1e-17     1.6e-17
*    IEEE      -10,+10     30000       7.2e-16     1.2e-16
* Also tested by ctan * ccot = 1 and catan(ctan(z))  =  z.
*/
```

```/*							ccotl()
*
*	Complex circular cotangent
*
*
*
* SYNOPSIS:
*
* void ccotl();
* cmplxl z, w;
*
* ccotl( &z, &w );
*
*
*
* DESCRIPTION:
*
* If
*     z = x + iy,
*
* then
*
*           sin 2x  -  i sinh 2y
*     w  =  --------------------.
*            cosh 2y  -  cos 2x
*
* On the real axis, the denominator has zeros at even
* multiples of PI/2.  Near these points it is evaluated
* by a Taylor series.
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    DEC       -10,+10      3000       6.5e-17     1.6e-17
*    IEEE      -10,+10     30000       9.2e-16     1.2e-16
* Also tested by ctan * ccot = 1 + i0.
*/
```

```/*							casinl()
*
*	Complex circular arc sine
*
*
*
* SYNOPSIS:
*
* void casinl();
* cmplxl z, w;
*
* casinl( &z, &w );
*
*
*
* DESCRIPTION:
*
* Inverse complex sine:
*
*                               2
* w = -i clog( iz + csqrt( 1 - z ) ).
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    DEC       -10,+10     10100       2.1e-15     3.4e-16
*    IEEE      -10,+10     30000       2.2e-14     2.7e-15
* Larger relative error can be observed for z near zero.
* Also tested by csin(casin(z)) = z.
*/
```

```/*							cacosl()
*
*	Complex circular arc cosine
*
*
*
* SYNOPSIS:
*
* void cacosl();
* cmplxl z, w;
*
* cacosl( &z, &w );
*
*
*
* DESCRIPTION:
*
*
* w = arccos z  =  PI/2 - arcsin z.
*
*
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    DEC       -10,+10      5200      1.6e-15      2.8e-16
*    IEEE      -10,+10     30000      1.8e-14      2.2e-15
*/
```

```/*							catanl()
*
*	Complex circular arc tangent
*
*
*
* SYNOPSIS:
*
* void catanl();
* cmplxl z, w;
*
* catanl( &z, &w );
*
*
*
* DESCRIPTION:
*
* If
*     z = x + iy,
*
* then
*          1       (    2x     )
* Re w  =  - arctan(-----------)  +  k PI
*          2       (     2    2)
*                  (1 - x  - y )
*
*               ( 2         2)
*          1    (x  +  (y+1) )
* Im w  =  - log(------------)
*          4    ( 2         2)
*               (x  +  (y-1) )
*
* Where k is an arbitrary integer.
*
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    DEC       -10,+10      5900       1.3e-16     7.8e-18
*    IEEE      -10,+10     30000       2.3e-15     8.5e-17
* The check catan( ctan(z) )  =  z, with |x| and |y| < PI/2,
* had peak relative error 1.5e-16, rms relative error
*/
```

```/*							cmplxl.c
*
*	Complex number arithmetic
*
*
*
* SYNOPSIS:
*
* typedef struct {
*      long double r;     real part
*      long double i;     imaginary part
*     }cmplxl;
*
* cmplxl *a, *b, *c;
*
* caddl( a, b, c );     c = b + a
* csubl( a, b, c );     c = b - a
* cmull( a, b, c );     c = b * a
* cdivl( a, b, c );     c = b / a
* cnegl( c );           c = -c
* cmovl( b, c );        c = b
*
*
*
* DESCRIPTION:
*
*    c.r  =  b.r + a.r
*    c.i  =  b.i + a.i
*
* Subtraction:
*    c.r  =  b.r - a.r
*    c.i  =  b.i - a.i
*
* Multiplication:
*    c.r  =  b.r * a.r  -  b.i * a.i
*    c.i  =  b.r * a.i  +  b.i * a.r
*
* Division:
*    d    =  a.r * a.r  +  a.i * a.i
*    c.r  = (b.r * a.r  + b.i * a.i)/d
*    c.i  = (b.i * a.r  -  b.r * a.i)/d
* ACCURACY:
*
* In DEC arithmetic, the test (1/z) * z = 1 had peak relative
* error 3.1e-17, rms 1.2e-17.  The test (y/z) * (z/y) = 1 had
* peak relative error 8.3e-17, rms 2.1e-17.
*
* Tests in the rectangle {-10,+10}:
*                      Relative error:
* arithmetic   function  # trials      peak         rms
*    DEC        cadd       10000       1.4e-17     3.4e-18
*    IEEE       cadd      100000       1.1e-16     2.7e-17
*    DEC        csub       10000       1.4e-17     4.5e-18
*    IEEE       csub      100000       1.1e-16     3.4e-17
*    DEC        cmul        3000       2.3e-17     8.7e-18
*    IEEE       cmul      100000       2.1e-16     6.9e-17
*    DEC        cdiv       18000       4.9e-17     1.3e-17
*    IEEE       cdiv      100000       3.7e-16     1.1e-16
*/
```

```/*							coshl.c
*
*	Hyperbolic cosine, long double precision
*
*
*
* SYNOPSIS:
*
* long double x, y, coshl();
*
* y = coshl( x );
*
*
*
* DESCRIPTION:
*
* Returns hyperbolic cosine of argument in the range MINLOGL to
* MAXLOGL.
*
* cosh(x)  =  ( exp(x) + exp(-x) )/2.
*
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    IEEE     +-10000      30000       1.1e-19     2.8e-20
*
*
* ERROR MESSAGES:
*
*   message         condition              value returned
* cosh overflow    |x| > MAXLOGL+LOGE2L      INFINITYL
*
*
*/
```

```/*							elliel.c
*
*	Incomplete elliptic integral of the second kind
*
*
*
* SYNOPSIS:
*
* long double phi, m, y, elliel();
*
* y = elliel( phi, m );
*
*
*
* DESCRIPTION:
*
* Approximates the integral
*
*
*                phi
*                 -
*                | |
*                |                   2
* E(phi_\m)  =    |    sqrt( 1 - m sin t ) dt
*                |
*              | |
*               -
*                0
*
* of amplitude phi and modulus m, using the arithmetic -
* geometric mean algorithm.
*
*
*
* ACCURACY:
*
* Tested at random arguments with phi in [-10, 10] and m in
* [0, 1].
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    IEEE     -10,10       50000       2.7e-18     2.3e-19
*
*
*/
```

```/*							ellikl.c
*
*	Incomplete elliptic integral of the first kind
*
*
*
* SYNOPSIS:
*
* long double phi, m, y, ellikl();
*
* y = ellikl( phi, m );
*
*
*
* DESCRIPTION:
*
* Approximates the integral
*
*
*
*                phi
*                 -
*                | |
*                |           dt
* F(phi_\m)  =    |    ------------------
*                |                   2
*              | |    sqrt( 1 - m sin t )
*               -
*                0
*
* of amplitude phi and modulus m, using the arithmetic -
* geometric mean algorithm.
*
*
*
*
* ACCURACY:
*
* Tested at random points with m in [0, 1] and phi as indicated.
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    IEEE     -10,10        30000      3.6e-18     4.1e-19
*
*
*/
```

```/*							ellpel.c
*
*	Complete elliptic integral of the second kind
*
*
*
* SYNOPSIS:
*
* long double m1, y, ellpel();
*
* y = ellpel( m1 );
*
*
*
* DESCRIPTION:
*
* Approximates the integral
*
*
*            pi/2
*             -
*            | |                 2
* E(m)  =    |    sqrt( 1 - m sin t ) dt
*          | |
*           -
*            0
*
* Where m = 1 - m1, using the approximation
*
*      P(x)  -  x log x Q(x).
*
* Though there are no singularities, the argument m1 is used
* rather than m for compatibility with ellpk().
*
* E(1) = 1; E(0) = pi/2.
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    IEEE       0, 1       10000       1.1e-19     3.5e-20
*
*
* ERROR MESSAGES:
*
*   message         condition      value returned
* ellpel domain     x<0, x>1            0.0
*
*/
```

```/*							ellpjl.c
*
*	Jacobian Elliptic Functions
*
*
*
* SYNOPSIS:
*
* long double u, m, sn, cn, dn, phi;
* int ellpjl();
*
* ellpjl( u, m, &sn, &cn, &dn, &phi );
*
*
*
* DESCRIPTION:
*
*
* Evaluates the Jacobian elliptic functions sn(u|m), cn(u|m),
* and dn(u|m) of parameter m between 0 and 1, and real
* argument u.
*
* These functions are periodic, with quarter-period on the
* real axis equal to the complete elliptic integral
* ellpk(1.0-m).
*
* Relation to incomplete elliptic integral:
* If u = ellik(phi,m), then sn(u|m) = sin(phi),
* and cn(u|m) = cos(phi).  Phi is called the amplitude of u.
*
* Computation is by means of the arithmetic-geometric mean
* algorithm, except when m is within 1e-12 of 0 or 1.  In the
* latter case with m close to 1, the approximation applies
* only for phi < pi/2.
*
* ACCURACY:
*
* Tested at random points with u between 0 and 10, m between
* 0 and 1.
*
*            Absolute error (* = relative error):
* arithmetic   function   # trials      peak         rms
*    IEEE      sn          10000       1.7e-18     2.3e-19
*    IEEE      cn          20000       1.6e-18     2.2e-19
*    IEEE      dn         100000       2.9e-18     9.1e-20
*    IEEE      phi         10000       4.0e-19*    6.6e-20*
*
* Accuracy deteriorates when u is large.
* Larger errors occur for m near 1.
*
*/
```

```/*							ellpkl.c
*
*	Complete elliptic integral of the first kind
*
*
*
* SYNOPSIS:
*
* long double m1, y, ellpkl();
*
* y = ellpkl( m1 );
*
*
*
* DESCRIPTION:
*
* Approximates the integral
*
*
*
*            pi/2
*             -
*            | |
*            |           dt
* K(m)  =    |    ------------------
*            |                   2
*          | |    sqrt( 1 - m sin t )
*           -
*            0
*
* where m = 1 - m1, using the approximation
*
*     P(x)  -  log x Q(x).
*
* The argument m1 is used rather than m so that the logarithmic
* singularity at m = 1 will be shifted to the origin; this
* preserves maximum accuracy.
*
* K(0) = pi/2.
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    IEEE       0,1        10000       1.1e-19     3.3e-20
*
* ERROR MESSAGES:
*
*   message         condition      value returned
* ellpkl domain      x<0, x>1           0.0
*
*/
```

```/*							exp10l.c
*
*	Base 10 exponential function, long double precision
*      (Common antilogarithm)
*
*
*
* SYNOPSIS:
*
* long double x, y, exp10l()
*
* y = exp10l( x );
*
*
*
* DESCRIPTION:
*
* Returns 10 raised to the x power.
*
* Range reduction is accomplished by expressing the argument
* as 10**x = 2**n 10**f, with |f| < 0.5 log10(2).
* The Pade' form
*
*     1 + 2x P(x**2)/( Q(x**2) - P(x**2) )
*
* is used to approximate 10**f.
*
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    IEEE      +-4900      30000       1.0e-19     2.7e-20
*
* ERROR MESSAGES:
*
*   message         condition      value returned
* exp10l underflow    x < -MAXL10        0.0
* exp10l overflow     x > MAXL10       MAXNUM
*
* IEEE arithmetic: MAXL10 = 4932.0754489586679023819
*
*/
```

```/*							exp2l.c
*
*	Base 2 exponential function, long double precision
*
*
*
* SYNOPSIS:
*
* long double x, y, exp2l();
*
* y = exp2l( x );
*
*
*
* DESCRIPTION:
*
* Returns 2 raised to the x power.
*
* Range reduction is accomplished by separating the argument
* into an integer k and fraction f such that
*     x    k  f
*    2  = 2  2.
*
* A Pade' form
*
*   1 + 2x P(x**2) / (Q(x**2) - x P(x**2) )
*
* approximates 2**x in the basic range [-0.5, 0.5].
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    IEEE      +-16300     300000      9.1e-20     2.6e-20
*
*
* See exp.c for comments on error amplification.
*
*
* ERROR MESSAGES:
*
*   message         condition      value returned
* exp2l underflow   x < -16382        0.0
* exp2l overflow    x >= 16384       MAXNUM
*
*/
```

```/*							expl.c
*
*	Exponential function, long double precision
*
*
*
* SYNOPSIS:
*
* long double x, y, expl();
*
* y = expl( x );
*
*
*
* DESCRIPTION:
*
* Returns e (2.71828...) raised to the x power.
*
* Range reduction is accomplished by separating the argument
* into an integer k and fraction f such that
*
*     x    k  f
*    e  = 2  e.
*
* A Pade' form of degree 2/3 is used to approximate exp(f) - 1
* in the basic range [-0.5 ln 2, 0.5 ln 2].
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    IEEE      +-10000     50000       1.12e-19    2.81e-20
*
*
* Error amplification in the exponential function can be
* a serious matter.  The error propagation involves
* exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ),
* which shows that a 1 lsb error in representing X produces
* a relative error of X times 1 lsb in the function.
* While the routine gives an accurate result for arguments
* that are exactly represented by a long double precision
* computer number, the result contains amplified roundoff
* error for large arguments not exactly represented.
*
*
* ERROR MESSAGES:
*
*   message         condition      value returned
* exp underflow    x < MINLOG         0.0
* exp overflow     x > MAXLOG         MAXNUM
*
*/
```

```/*							expm1l.c
*
*	Exponential function, minus 1
*      Long double precision
*
*
* SYNOPSIS:
*
* long double x, y, expm1l();
*
* y = expm1l( x );
*
*
*
* DESCRIPTION:
*
* Returns e (2.71828...) raised to the x power, minus 1.
*
* Range reduction is accomplished by separating the argument
* into an integer k and fraction f such that
*
*     x    k  f
*    e  = 2  e.
*
* An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1
* in the basic range [-0.5 ln 2, 0.5 ln 2].
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    IEEE    -45,+MAXLOG   200,000     1.2e-19     2.5e-20
*
* ERROR MESSAGES:
*
*   message         condition      value returned
* expm1l overflow   x > MAXLOG         MAXNUM
*
*/
```

```/*							expx2l.c
*
*	Exponential of squared argument
*
*
*
* SYNOPSIS:
*
* long double x, y, expx2l();
* int sign;
*
* y = expx2l( x, sign );
*
*
*
* DESCRIPTION:
*
* Computes y = exp(x*x) while suppressing error amplification
* that would ordinarily arise from the inexactness of the
* exponential argument x*x.
*
* If sign < 0, the result is inverted; i.e., y = exp(-x*x) .
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic      domain        # trials      peak         rms
*   IEEE     -106.566, 106.566    10^5       1.6e-19     4.4e-20
*
*/
```

```/*							fdtrl.c
*
*	F distribution, long double precision
*
*
*
* SYNOPSIS:
*
* int df1, df2;
* long double x, y, fdtrl();
*
* y = fdtrl( df1, df2, x );
*
*
*
* DESCRIPTION:
*
* Returns the area from zero to x under the F density
* function (also known as Snedcor's density or the
* variance ratio density).  This is the density
* of x = (u1/df1)/(u2/df2), where u1 and u2 are random
* variables having Chi square distributions with df1
* and df2 degrees of freedom, respectively.
*
* The incomplete beta integral is used, according to the
* formula
*
*	P(x) = incbetl( df1/2, df2/2, (df1*x/(df2 + df1*x) ).
*
*
* The arguments a and b are greater than zero, and x
* x is nonnegative.
*
* ACCURACY:
*
* Tested at random points (a,b,x) in the indicated intervals.
*                x     a,b                     Relative error:
* arithmetic  domain  domain     # trials      peak         rms
*    IEEE      0,1    1,100       10000       9.3e-18     2.9e-19
*    IEEE      0,1    1,10000     10000       1.9e-14     2.9e-15
*    IEEE      1,5    1,10000     10000       5.8e-15     1.4e-16
*
* ERROR MESSAGES:
*
*   message         condition      value returned
* fdtrl domain     a<0, b<0, x<0         0.0
*
*/
```

```/*							fdtrcl()
*
*	Complemented F distribution
*
*
*
* SYNOPSIS:
*
* int df1, df2;
* long double x, y, fdtrcl();
*
* y = fdtrcl( df1, df2, x );
*
*
*
* DESCRIPTION:
*
* Returns the area from x to infinity under the F density
* function (also known as Snedcor's density or the
* variance ratio density).
*
*
*                      inf.
*                       -
*              1       | |  a-1      b-1
* 1-P(x)  =  ------    |   t    (1-t)    dt
*            B(a,b)  | |
*                     -
*                      x
*
* (See fdtr.c.)
*
* The incomplete beta integral is used, according to the
* formula
*
*	P(x) = incbet( df2/2, df1/2, (df2/(df2 + df1*x) ).
*
*
* ACCURACY:
*
* See incbet.c.
* Tested at random points (a,b,x).
*
*                x     a,b                     Relative error:
* arithmetic  domain  domain     # trials      peak         rms
*    IEEE      0,1    0,100       10000       4.2e-18     3.3e-19
*    IEEE      0,1    1,10000     10000       7.2e-15     2.6e-16
*    IEEE      1,5    1,10000     10000       1.7e-14     3.0e-15
*
* ERROR MESSAGES:
*
*   message         condition      value returned
* fdtrcl domain    a<0, b<0, x<0         0.0
*
*/
```

```/*							fdtril()
*
*	Inverse of complemented F distribution
*
*
*
* SYNOPSIS:
*
* int df1, df2;
* long double x, p, fdtril();
*
* x = fdtril( df1, df2, p );
*
* DESCRIPTION:
*
* Finds the F density argument x such that the integral
* from x to infinity of the F density is equal to the
* given probability p.
*
* This is accomplished using the inverse beta integral
* function and the relations
*
*      z = incbi( df2/2, df1/2, p )
*      x = df2 (1-z) / (df1 z).
*
* Note: the following relations hold for the inverse of
* the uncomplemented F distribution:
*
*      z = incbi( df1/2, df2/2, p )
*      x = df2 z / (df1 (1-z)).
*
* ACCURACY:
*
* See incbi.c.
* Tested at random points (a,b,p).
*
*              a,b                     Relative error:
* arithmetic  domain     # trials      peak         rms
*  For p between .001 and 1:
*    IEEE     1,100       40000       4.6e-18     2.7e-19
*    IEEE     1,10000     30000       1.7e-14     1.4e-16
*  For p between 10^-6 and .001:
*    IEEE     1,100       20000       1.9e-15     3.9e-17
*    IEEE     1,10000     30000       2.7e-15     4.0e-17
*
* ERROR MESSAGES:
*
*   message         condition      value returned
* fdtril domain   p <= 0 or p > 1       0.0
*                     v < 1
*/
```

```/*							ceill()
*							floorl()
*							frexpl()
*							ldexpl()
*							fabsl()
*							signbitl()
*							isnanl()
*							isfinitel()
*
*	Floating point numeric utilities
*
*
*
* SYNOPSIS:
*
* long double ceill(), floorl(), frexpl(), ldexpl(), fabsl();
* int signbitl(), isnanl(), isfinitel();
* long double x, y;
* int expnt, n;
*
* y = floorl(x);
* y = ceill(x);
* y = frexpl( x, &expnt );
* y = ldexpl( x, n );
* y = fabsl( x );
* n = signbitl(x);
* n = isnanl(x);
* n = isfinitel(x);
*
*
*
* DESCRIPTION:
*
* The following routines return a long double precision floating point
* result:
*
* floorl() returns the largest integer less than or equal to x.
* It truncates toward minus infinity.
*
* ceill() returns the smallest integer greater than or equal
* to x.  It truncates toward plus infinity.
*
* frexpl() extracts the exponent from x.  It returns an integer
* power of two to expnt and the significand between 0.5 and 1
* to y.  Thus  x = y * 2**expn.
*
* ldexpl() multiplies x by 2**n.
*
* fabsl() returns the absolute value of its argument.
*
* These functions are part of the standard C run time library
* for some but not all C compilers.  The ones supplied are
* written in C for IEEE arithmetic.  They should
* be used only if your compiler library does not already have
* them.
*
* The IEEE versions assume that denormal numbers are implemented
* in the arithmetic.  Some modifications will be required if
* the arithmetic has abrupt rather than gradual underflow.
*/
```

```/*							gammal.c
*
*	Gamma function
*
*
*
* SYNOPSIS:
*
* long double x, y, gammal();
* extern int sgngam;
*
* y = gammal( x );
*
*
*
* DESCRIPTION:
*
* Returns gamma function of the argument.  The result is
* correctly signed, and the sign (+1 or -1) is also
* returned in a global (extern) variable named sgngam.
* This variable is also filled in by the logarithmic gamma
* function lgam().
*
* Arguments |x| <= 13 are reduced by recurrence and the function
* approximated by a rational function of degree 7/8 in the
* interval (2,3).  Large arguments are handled by Stirling's
* formula. Large negative arguments are made positive using
* a reflection formula.
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    IEEE     -40,+40      10000       3.6e-19     7.9e-20
*    IEEE    -1755,+1755   10000       4.8e-18     6.5e-19
*
* Accuracy for large arguments is dominated by error in powl().
*
*/
```

```/*							lgaml()
*
*	Natural logarithm of gamma function
*
*
*
* SYNOPSIS:
*
* long double x, y, lgaml();
* extern int sgngam;
*
* y = lgaml( x );
*
*
*
* DESCRIPTION:
*
* Returns the base e (2.718...) logarithm of the absolute
* value of the gamma function of the argument.
* The sign (+1 or -1) of the gamma function is returned in a
* global (extern) variable named sgngam.
*
* For arguments greater than 33, the logarithm of the gamma
* function is approximated by the logarithmic version of
* Stirling's formula using a polynomial approximation of
* degree 4. Arguments between -33 and +33 are reduced by
* recurrence to the interval [2,3] of a rational approximation.
* The cosecant reflection formula is employed for arguments
* less than -33.
*
* Arguments greater than MAXLGML (10^4928) return MAXNUML.
*
*
*
* ACCURACY:
*
*
* arithmetic      domain        # trials     peak         rms
*    IEEE         -40, 40        100000     2.2e-19     4.6e-20
*    IEEE    10^-2000,10^+2000    20000     1.6e-19     3.3e-20
* The error criterion was relative when the function magnitude
* was greater than one but absolute when it was less than one.
*
*/
```

```/*							gdtrl.c
*
*	Gamma distribution function
*
*
*
* SYNOPSIS:
*
* long double a, b, x, y, gdtrl();
*
* y = gdtrl( a, b, x );
*
*
*
* DESCRIPTION:
*
* Returns the integral from zero to x of the gamma probability
* density function:
*
*
*                x
*        b       -
*       a       | |   b-1  -at
* y =  -----    |    t    e    dt
*       -     | |
*      | (b)   -
*               0
*
*  The incomplete gamma integral is used, according to the
* relation
*
* y = igam( b, ax ).
*
*
* ACCURACY:
*
* See igam().
*
* ERROR MESSAGES:
*
*   message         condition      value returned
* gdtrl domain        x < 0            0.0
*
*/
```

```/*							gdtrcl.c
*
*	Complemented gamma distribution function
*
*
*
* SYNOPSIS:
*
* long double a, b, x, y, gdtrcl();
*
* y = gdtrcl( a, b, x );
*
*
*
* DESCRIPTION:
*
* Returns the integral from x to infinity of the gamma
* probability density function:
*
*
*               inf.
*        b       -
*       a       | |   b-1  -at
* y =  -----    |    t    e    dt
*       -     | |
*      | (b)   -
*               x
*
*  The incomplete gamma integral is used, according to the
* relation
*
* y = igamc( b, ax ).
*
*
* ACCURACY:
*
* See igamc().
*
* ERROR MESSAGES:
*
*   message         condition      value returned
* gdtrcl domain        x < 0            0.0
*
*/
```

```/*
C
C     ..................................................................
C
C        SUBROUTINE GELS
C
C        PURPOSE
C           TO SOLVE A SYSTEM OF SIMULTANEOUS LINEAR EQUATIONS WITH
C           SYMMETRIC COEFFICIENT MATRIX UPPER TRIANGULAR PART OF WHICH
C           IS ASSUMED TO BE STORED COLUMNWISE.
C
C        USAGE
C           CALL GELS(R,A,M,N,EPS,IER,AUX)
C
C        DESCRIPTION OF PARAMETERS
C           R      - M BY N RIGHT HAND SIDE MATRIX.  (DESTROYED)
C                    ON RETURN R CONTAINS THE SOLUTION OF THE EQUATIONS.
C           A      - UPPER TRIANGULAR PART OF THE SYMMETRIC
C                    M BY M COEFFICIENT MATRIX.  (DESTROYED)
C           M      - THE NUMBER OF EQUATIONS IN THE SYSTEM.
C           N      - THE NUMBER OF RIGHT HAND SIDE VECTORS.
C           EPS    - AN INPUT CONSTANT WHICH IS USED AS RELATIVE
C                    TOLERANCE FOR TEST ON LOSS OF SIGNIFICANCE.
C           IER    - RESULTING ERROR PARAMETER CODED AS FOLLOWS
C                    IER=0  - NO ERROR,
C                    IER=-1 - NO RESULT BECAUSE OF M LESS THAN 1 OR
C                             PIVOT ELEMENT AT ANY ELIMINATION STEP
C                             EQUAL TO 0,
C                    IER=K  - WARNING DUE TO POSSIBLE LOSS OF SIGNIFI-
C                             CANCE INDICATED AT ELIMINATION STEP K+1,
C                             WHERE PIVOT ELEMENT WAS LESS THAN OR
C                             EQUAL TO THE INTERNAL TOLERANCE EPS TIMES
C                             ABSOLUTELY GREATEST MAIN DIAGONAL
C                             ELEMENT OF MATRIX A.
C           AUX    - AN AUXILIARY STORAGE ARRAY WITH DIMENSION M-1.
C
C        REMARKS
C           UPPER TRIANGULAR PART OF MATRIX A IS ASSUMED TO BE STORED
C           COLUMNWISE IN M*(M+1)/2 SUCCESSIVE STORAGE LOCATIONS, RIGHT
C           HAND SIDE MATRIX R COLUMNWISE IN N*M SUCCESSIVE STORAGE
C           LOCATIONS. ON RETURN SOLUTION MATRIX R IS STORED COLUMNWISE
C           TOO.
C           THE PROCEDURE GIVES RESULTS IF THE NUMBER OF EQUATIONS M IS
C           GREATER THAN 0 AND PIVOT ELEMENTS AT ALL ELIMINATION STEPS
C           ARE DIFFERENT FROM 0. HOWEVER WARNING IER=K - IF GIVEN -
C           INDICATES POSSIBLE LOSS OF SIGNIFICANCE. IN CASE OF A WELL
C           SCALED MATRIX A AND APPROPRIATE TOLERANCE EPS, IER=K MAY BE
C           INTERPRETED THAT MATRIX A HAS THE RANK K. NO WARNING IS
C           GIVEN IN CASE M=1.
C           ERROR PARAMETER IER=-1 DOES NOT NECESSARILY MEAN THAT
C           MATRIX A IS SINGULAR, AS ONLY MAIN DIAGONAL ELEMENTS
C           ARE USED AS PIVOT ELEMENTS. POSSIBLY SUBROUTINE GELG (WHICH
C           WORKS WITH TOTAL PIVOTING) WOULD BE ABLE TO FIND A SOLUTION.
C
C        SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C           NONE
C
C        METHOD
C           SOLUTION IS DONE BY MEANS OF GAUSS-ELIMINATION WITH
C           PIVOTING IN MAIN DIAGONAL, IN ORDER TO PRESERVE
C           SYMMETRY IN REMAINING COEFFICIENT MATRICES.
C
C     ..................................................................
C
*/
```

```/*							hypergl.c
*
*	Confluent hypergeometric function
*
*
*
* SYNOPSIS:
*
* long double a, b, x, y, hypergl();
*
* y = hypergl( a, b, x );
*
*
*
* DESCRIPTION:
*
* Computes the confluent hypergeometric function
*
*                          1           2
*                       a x    a(a+1) x
*   F ( a,b;x )  =  1 + ---- + --------- + ...
*  1 1                  b 1!   b(b+1) 2!
*
* Many higher transcendental functions are special cases of
* this power series.
*
* As is evident from the formula, b must not be a negative
* integer or zero unless a is an integer with 0 >= a > b.
*
* The routine attempts both a direct summation of the series
* and an asymptotic expansion.  In each case error due to
* roundoff, cancellation, and nonconvergence is estimated.
* The result with smaller estimated error is returned.
*
*
*
* ACCURACY:
*
* Tested at random points (a, b, x), all three variables
* ranging from 0 to 30.
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    IEEE      0,30        100000      3.3e-18     5.0e-19
*
* Larger errors can be observed when b is near a negative
* integer or zero.  Certain combinations of arguments yield
* serious cancellation error in the power series summation
* and also are not in the region of near convergence of the
* asymptotic series.  An error message is printed if the
* self-estimated relative error is greater than 1.0e-12.
*
*/
```

```/*							ieee.c
*
*    Extended precision IEEE binary floating point arithmetic routines
*
* Numbers are stored in C language as arrays of 16-bit unsigned
* short integers.  The arguments of the routines are pointers to
* the arrays.
*
*
* External e type data structure, simulates Intel 8087 chip
* temporary real format but possibly with a larger significand:
*
*	NE-1 significand words	(least significant word first,
*				 most significant bit is normally set)
*	exponent		(value = EXONE for 1.0,
*				top bit is the sign)
*
*
* Internal data structure of a number (a "word" is 16 bits):
*
* ei	sign word	(0 for positive, 0xffff for negative)
* ei	biased exponent	(value = EXONE for the number 1.0)
* ei	high guard word	(always zero after normalization)
* ei
* to ei[NI-2]	significand	(NI-4 significand words,
*				 most significant word first,
*				 most significant bit is set)
* ei[NI-1]	low guard word	(0x8000 bit is rounding place)
*
*
*
*		Routines for external format numbers
*
*	asctoe( string, e )	ASCII string to extended double e type
*	asctoe64( string, &d )	ASCII string to long double
*	asctoe53( string, &d )	ASCII string to double
*	asctoe24( string, &f )	ASCII string to single
*	asctoeg( string, e, prec ) ASCII string to specified precision
*	e24toe( &f, e )		IEEE single precision to e type
*	e53toe( &d, e )		IEEE double precision to e type
*	e64toe( &d, e )		IEEE long double precision to e type
*	eabs(e)			absolute value
*	eadd( a, b, c )		c = b + a
*	eclear(e)		e = 0
*	ecmp (a, b)		Returns 1 if a > b, 0 if a == b,
*				-1 if a < b, -2 if either a or b is a NaN.
*	ediv( a, b, c )		c = b / a
*	efloor( a, b )		truncate to integer, toward -infinity
*	efrexp( a, exp, s )	extract exponent and significand
*	eifrac( e, &l, frac )   e to long integer and e type fraction
*	euifrac( e, &l, frac )  e to unsigned long integer and e type fraction
*	einfin( e )		set e to infinity, leaving its sign alone
*	eldexp( a, n, b )	multiply by 2**n
*	emov( a, b )		b = a
*	emul( a, b, c )		c = b * a
*	eneg(e)			e = -e
*	eround( a, b )		b = nearest integer value to a
*	esub( a, b, c )		c = b - a
*	e24toasc( &f, str, n )	single to ASCII string, n digits after decimal
*	e53toasc( &d, str, n )	double to ASCII string, n digits after decimal
*	e64toasc( &d, str, n )	long double to ASCII string
*	etoasc( e, str, n )	e to ASCII string, n digits after decimal
*	etoe24( e, &f )		convert e type to IEEE single precision
*	etoe53( e, &d )		convert e type to IEEE double precision
*	etoe64( e, &d )		convert e type to IEEE long double precision
*	ltoe( &l, e )		long (32 bit) integer to e type
*	ultoe( &l, e )		unsigned long (32 bit) integer to e type
*      eisneg( e )             1 if sign bit of e != 0, else 0
*      eisinf( e )             1 if e has maximum exponent (non-IEEE)
*				or is infinite (IEEE)
*      eisnan( e )             1 if e is a NaN
*	esqrt( a, b )		b = square root of a
*
*
*		Routines for internal format numbers
*
*	eaddm( ai, bi )		add significands, bi = bi + ai
*	ecleaz(ei)		ei = 0
*	ecleazs(ei)		set ei = 0 but leave its sign alone
*	ecmpm( ai, bi )		compare significands, return 1, 0, or -1
*	edivm( ai, bi )		divide  significands, bi = bi / ai
*	emdnorm(ai,l,s,exp)	normalize and round off
*	emovi( a, ai )		convert external a to internal ai
*	emovo( ai, a )		convert internal ai to external a
*	emovz( ai, bi )		bi = ai, low guard word of bi = 0
*	emulm( ai, bi )		multiply significands, bi = bi * ai
*	enormlz(ei)		left-justify the significand
*	eshdn1( ai )		shift significand and guards down 1 bit
*	eshdn8( ai )		shift down 8 bits
*	eshdn6( ai )		shift down 16 bits
*	eshift( ai, n )		shift ai n bits up (or down if n < 0)
*	eshup1( ai )		shift significand and guards up 1 bit
*	eshup8( ai )		shift up 8 bits
*	eshup6( ai )		shift up 16 bits
*	esubm( ai, bi )		subtract significands, bi = bi - ai
*
*
* The result is always normalized and rounded to NI-4 word precision
* after each arithmetic operation.
*
* Exception flags are NOT fully supported.
*
* Define INFINITY in mconf.h for support of infinity; otherwise a
* saturation arithmetic is implemented.
*
* Define NANS for support of Not-a-Number items; otherwise the
* arithmetic will never produce a NaN output, and might be confused
* by a NaN input.
* If NaN's are supported, the output of ecmp(a,b) is -2 if
* either a or b is a NaN. This means asking if(ecmp(a,b) < 0)
* may not be legitimate. Use if(ecmp(a,b) == -1) for less-than
* if in doubt.
* Signaling NaN's are NOT supported; they are treated the same
* as quiet NaN's.
*
* Denormals are always supported here where appropriate (e.g., not
* for conversion to DEC numbers).
*/

/*
* Revision history:
*
*  5 Jan 84	PDP-11 assembly language version
*  2 Mar 86	fixed bug in asctoq()
*  6 Dec 86	C language version
* 30 Aug 88	100 digit version, improved rounding
* 15 May 92    80-bit long double support
*
* Author:  S. L. Moshier.
*/
```

```/*							igamil()
*
*      Inverse of complemented imcomplete gamma integral
*
*
*
* SYNOPSIS:
*
* long double a, x, y, igamil();
*
* x = igamil( a, y );
*
*
*
* DESCRIPTION:
*
* Given y, the function finds x such that
*
*  igamc( a, x ) = y.
*
* It is valid in the right-hand tail of the distribution, y < 0.5.
* Starting with the approximate value
*
*         3
*  x = a t
*
*  where
*
*  t = 1 - d - ndtri(y) sqrt(d)
*
* and
*
*  d = 1/9a,
*
* the routine performs up to 10 Newton iterations to find the
* root of igamc(a,x) - y = 0.
*
*
* ACCURACY:
*
* Tested for a ranging from 0.5 to 30 and x from 0 to 0.5.
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    DEC       0,0.5         3400       8.8e-16     1.3e-16
*    IEEE      0,0.5        10000       1.1e-14     1.0e-15
*
*/
```

```/*							igaml.c
*
*	Incomplete gamma integral
*
*
*
* SYNOPSIS:
*
* long double a, x, y, igaml();
*
* y = igaml( a, x );
*
*
*
* DESCRIPTION:
*
* The function is defined by
*
*                           x
*                            -
*                   1       | |  -t  a-1
*  igam(a,x)  =   -----     |   e   t   dt.
*                  -      | |
*                 | (a)    -
*                           0
*
*
* In this implementation both arguments must be positive.
* The integral is evaluated by either a power series or
* continued fraction expansion, depending on the relative
* values of a and x.
*
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    DEC       0,30         4000       4.4e-15     6.3e-16
*    IEEE      0,30        10000       3.6e-14     5.1e-15
*
*/
```

```/*							igamcl()
*
*	Complemented incomplete gamma integral
*
*
*
* SYNOPSIS:
*
* long double a, x, y, igamcl();
*
* y = igamcl( a, x );
*
*
*
* DESCRIPTION:
*
* The function is defined by
*
*
*  igamc(a,x)   =   1 - igam(a,x)
*
*                            inf.
*                              -
*                     1       | |  -t  a-1
*               =   -----     |   e   t   dt.
*                    -      | |
*                   | (a)    -
*                             x
*
*
* In this implementation both arguments must be positive.
* The integral is evaluated by either a power series or
* continued fraction expansion, depending on the relative
* values of a and x.
*
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    DEC       0,30         2000       2.7e-15     4.0e-16
*    IEEE      0,30        60000       1.4e-12     6.3e-15
*
*/
```

```/*							incbetl.c
*
*	Incomplete beta integral
*
*
* SYNOPSIS:
*
* long double a, b, x, y, incbetl();
*
* y = incbetl( a, b, x );
*
*
* DESCRIPTION:
*
* Returns incomplete beta integral of the arguments, evaluated
* from zero to x.  The function is defined as
*
*                  x
*     -            -
*    | (a+b)      | |  a-1     b-1
*  -----------    |   t   (1-t)   dt.
*   -     -     | |
*  | (a) | (b)   -
*                 0
*
* The domain of definition is 0 <= x <= 1.  In this
* implementation a and b are restricted to positive values.
* The integral from x to 1 may be obtained by the symmetry
* relation
*
*    1 - incbet( a, b, x )  =  incbet( b, a, 1-x ).
*
* The integral is evaluated by a continued fraction expansion
* or, when b*x is small, by a power series.
*
* ACCURACY:
*
* Tested at random points (a,b,x) with x between 0 and 1.
* arithmetic   domain     # trials      peak         rms
*    IEEE       0,5       20000        4.5e-18     2.4e-19
*    IEEE       0,100    100000        3.9e-17     1.0e-17
* Half-integer a, b:
*    IEEE      .5,10000  100000        3.9e-14     4.4e-15
* Outputs smaller than the IEEE gradual underflow threshold
* were excluded from these statistics.
*
* ERROR MESSAGES:
*
*   message         condition      value returned
* incbetl domain     x<0, x>1          0.0
*/
```

```/*							incbil()
*
*      Inverse of imcomplete beta integral
*
*
*
* SYNOPSIS:
*
* long double a, b, x, y, incbil();
*
* x = incbil( a, b, y );
*
*
*
* DESCRIPTION:
*
* Given y, the function finds x such that
*
*  incbet( a, b, x ) = y.
*
* the routine performs up to 10 Newton iterations to find the
* root of incbet(a,b,x) - y = 0.
*
*
* ACCURACY:
*
*                      Relative error:
*                x       a,b
* arithmetic   domain   domain   # trials    peak       rms
*    IEEE      0,1    .5,10000    10000    1.1e-14   1.4e-16
*/
```

```/*							isnanl()
*							isfinitel()
*							signbitl()
*
*	Floating point IEEE special number tests
*
*
*
* SYNOPSIS:
*
* int signbitl(), isnanl(), isfinitel();
* long double x, y;
*
* n = signbitl(x);
* n = isnanl(x);
* n = isfinitel(x);
*
*
*
* DESCRIPTION:
*
* These functions are part of the standard C run time library
* for some but not all C compilers.  The ones supplied are
* written in C for IEEE arithmetic.  They should
* be used only if your compiler library does not already have
* them.
*
*/
```

```/*							j0l.c
*
*	Bessel function of order zero
*
*
*
* SYNOPSIS:
*
* long double x, y, j0l();
*
* y = j0l( x );
*
*
*
* DESCRIPTION:
*
* Returns Bessel function of first kind, order zero of the argument.
*
* The domain is divided into the intervals [0, 9] and
* (9, infinity). In the first interval the rational approximation
* is (x^2 - r^2) (x^2 - s^2) (x^2 - t^2) P7(x^2) / Q8(x^2),
* where r, s, t are the first three zeros of the function.
* In the second interval the expansion is in terms of the
* modulus M0(x) = sqrt(J0(x)^2 + Y0(x)^2) and phase  P0(x)
* = atan(Y0(x)/J0(x)).  M0 is approximated by sqrt(1/x)P7(1/x)/Q7(1/x).
* The approximation to J0 is M0 * cos(x -  pi/4 + 1/x P5(1/x^2)/Q6(1/x^2)).
*
*
* ACCURACY:
*
*                      Absolute error:
* arithmetic   domain      # trials      peak         rms
*    IEEE      0, 30       100000      2.8e-19      7.4e-20
*
*
*/
```

```/*							y0l.c
*
*	Bessel function of the second kind, order zero
*
*
*
* SYNOPSIS:
*
* double x, y, y0l();
*
* y = y0l( x );
*
*
*
* DESCRIPTION:
*
* Returns Bessel function of the second kind, of order
* zero, of the argument.
*
* The domain is divided into the intervals [0, 5>, [5,9> and
* [9, infinity). In the first interval a rational approximation
* R(x) is employed to compute y0(x)  = R(x) + 2/pi * log(x) * j0(x).
*
* In the second interval, the approximation is
*     (x - p)(x - q)(x - r)(x - s)P7(x)/Q7(x)
* where p, q, r, s are zeros of y0(x).
*
* The third interval uses the same approximations to modulus
* and phase as j0(x), whence y0(x) = modulus * sin(phase).
*
* ACCURACY:
*
*  Absolute error, when y0(x) < 1; else relative error:
*
* arithmetic   domain     # trials      peak         rms
*    IEEE      0, 30       100000      3.4e-19     7.6e-20
*
*/
```

```/*							j1l.c
*
*	Bessel function of order one
*
*
*
* SYNOPSIS:
*
* long double x, y, j1l();
*
* y = j1l( x );
*
*
*
* DESCRIPTION:
*
* Returns Bessel function of order one of the argument.
*
* The domain is divided into the intervals [0, 9] and
* (9, infinity). In the first interval the rational approximation
* is (x^2 - r^2) (x^2 - s^2) (x^2 - t^2) x P8(x^2) / Q8(x^2),
* where r, s, t are the first three zeros of the function.
* In the second interval the expansion is in terms of the
* modulus M1(x) = sqrt(J1(x)^2 + Y1(x)^2) and phase  P1(x)
* = atan(Y1(x)/J1(x)).  M1 is approximated by sqrt(1/x)P7(1/x)/Q8(1/x).
* The approximation to j1 is M1 * cos(x -  3 pi/4 + 1/x P5(1/x^2)/Q6(1/x^2)).
*
*
* ACCURACY:
*
*                      Absolute error:
* arithmetic   domain      # trials      peak         rms
*    IEEE      0, 30        40000      1.8e-19      5.0e-20
*
*
*/
```

```/*							y1l.c
*
*	Bessel function of the second kind, order zero
*
*
*
* SYNOPSIS:
*
* double x, y, y1l();
*
* y = y1l( x );
*
*
*
* DESCRIPTION:
*
* Returns Bessel function of the second kind, of order
* zero, of the argument.
*
* The domain is divided into the intervals [0, 4.5>, [4.5,9> and
* [9, infinity). In the first interval a rational approximation
* R(x) is employed to compute y0(x)  = R(x) + 2/pi * log(x) * j0(x).
*
* In the second interval, the approximation is
*     (x - p)(x - q)(x - r)(x - s)P9(x)/Q10(x)
* where p, q, r, s are zeros of y1(x).
*
* The third interval uses the same approximations to modulus
* and phase as j1(x), whence y1(x) = modulus * sin(phase).
*
* ACCURACY:
*
*  Absolute error, when y0(x) < 1; else relative error:
*
* arithmetic   domain     # trials      peak         rms
*    IEEE      0, 30       36000       2.7e-19     5.3e-20
*
*/
```

```/*							jnl.c
*
*	Bessel function of integer order
*
*
*
* SYNOPSIS:
*
* int n;
* long double x, y, jnl();
*
* y = jnl( n, x );
*
*
*
* DESCRIPTION:
*
* Returns Bessel function of order n, where n is a
* (possibly negative) integer.
*
* The ratio of jn(x) to j0(x) is computed by backward
* recurrence.  First the ratio jn/jn-1 is found by a
* continued fraction expansion.  Then the recurrence
* relating successive orders is applied until j0 or j1 is
* reached.
*
* If n = 0 or 1 the routine for j0 or j1 is called
* directly.
*
*
*
* ACCURACY:
*
*                      Absolute error:
* arithmetic   domain      # trials      peak         rms
*    IEEE     -30, 30        5000       3.3e-19     4.7e-20
*
*
* Not suitable for large n or x.
*
*/
```

```/*							ldrand.c
*
*	Pseudorandom number generator
*
*
*
* SYNOPSIS:
*
* double y;
* int ldrand();
*
* ldrand( &y );
*
*
*
* DESCRIPTION:
*
* Yields a random number 1.0 < = y < 2.0.
*
* The three-generator congruential algorithm by Brian
* Wichmann and David Hill (BYTE magazine, March, 1987,
* pp 127-8) is used.
*
* Versions invoked by the different arithmetic compile
* time options IBMPC, and MIEEE, produce the same sequences.
*
*/
```

```/*							log10l.c
*
*	Common logarithm, long double precision
*
*
*
* SYNOPSIS:
*
* long double x, y, log10l();
*
* y = log10l( x );
*
*
*
* DESCRIPTION:
*
* Returns the base 10 logarithm of x.
*
* The argument is separated into its exponent and fractional
* parts.  If the exponent is between -1 and +1, the logarithm
* of the fraction is approximated by
*
*     log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
*
* Otherwise, setting  z = 2(x-1)/x+1),
*
*     log(x) = z + z**3 P(z)/Q(z).
*
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    IEEE      0.5, 2.0     30000      9.0e-20     2.6e-20
*    IEEE     exp(+-10000)  30000      6.0e-20     2.3e-20
*
* In the tests over the interval exp(+-10000), the logarithms
* of the random arguments were uniformly distributed over
* [-10000, +10000].
*
* ERROR MESSAGES:
*
* log singularity:  x = 0; returns MINLOG
* log domain:       x < 0; returns MINLOG
*/
```

```/*							log1pl.c
*
*      Relative error logarithm
*	Natural logarithm of 1+x, long double precision
*
*
*
* SYNOPSIS:
*
* long double x, y, log1pl();
*
* y = log1pl( x );
*
*
*
* DESCRIPTION:
*
* Returns the base e (2.718...) logarithm of 1+x.
*
* The argument 1+x is separated into its exponent and fractional
* parts.  If the exponent is between -1 and +1, the logarithm
* of the fraction is approximated by
*
*     log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
*
* Otherwise, setting  z = 2(x-1)/x+1),
*
*     log(x) = z + z^3 P(z)/Q(z).
*
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    IEEE     -1.0, 9.0    100000      8.2e-20    2.5e-20
*
* ERROR MESSAGES:
*
* log singularity:  x-1 = 0; returns -INFINITYL
* log domain:       x-1 < 0; returns NANL
*/
```

```/*							log2l.c
*
*	Base 2 logarithm, long double precision
*
*
*
* SYNOPSIS:
*
* long double x, y, log2l();
*
* y = log2l( x );
*
*
*
* DESCRIPTION:
*
* Returns the base 2 logarithm of x.
*
* The argument is separated into its exponent and fractional
* parts.  If the exponent is between -1 and +1, the (natural)
* logarithm of the fraction is approximated by
*
*     log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
*
* Otherwise, setting  z = 2(x-1)/x+1),
*
*     log(x) = z + z**3 P(z)/Q(z).
*
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    IEEE      0.5, 2.0     30000      9.8e-20     2.7e-20
*    IEEE     exp(+-10000)  70000      5.4e-20     2.3e-20
*
* In the tests over the interval exp(+-10000), the logarithms
* of the random arguments were uniformly distributed over
* [-10000, +10000].
*
* ERROR MESSAGES:
*
* log singularity:  x = 0; returns -INFINITYL
* log domain:       x < 0; returns NANL
*/
```

```/*							logl.c
*
*	Natural logarithm, long double precision
*
*
*
* SYNOPSIS:
*
* long double x, y, logl();
*
* y = logl( x );
*
*
*
* DESCRIPTION:
*
* Returns the base e (2.718...) logarithm of x.
*
* The argument is separated into its exponent and fractional
* parts.  If the exponent is between -1 and +1, the logarithm
* of the fraction is approximated by
*
*     log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
*
* Otherwise, setting  z = 2(x-1)/x+1),
*
*     log(x) = z + z**3 P(z)/Q(z).
*
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    IEEE      0.5, 2.0    150000      8.71e-20    2.75e-20
*    IEEE     exp(+-10000) 100000      5.39e-20    2.34e-20
*
* In the tests over the interval exp(+-10000), the logarithms
* of the random arguments were uniformly distributed over
* [-10000, +10000].
*
* ERROR MESSAGES:
*
* log singularity:  x = 0; returns -INFINITYL
* log domain:       x < 0; returns NANL
*/
```

```/*							mtherr.c
*
*	Library common error handling routine
*
*
*
* SYNOPSIS:
*
* char *fctnam;
* int code;
* int mtherr();
*
* mtherr( fctnam, code );
*
*
*
* DESCRIPTION:
*
* This routine may be called to report one of the following
* error conditions (in the include file mconf.h).
*
*   Mnemonic        Value          Significance
*
*    DOMAIN            1       argument domain error
*    SING              2       function singularity
*    OVERFLOW          3       overflow range error
*    UNDERFLOW         4       underflow range error
*    TLOSS             5       total loss of precision
*    PLOSS             6       partial loss of precision
*    EDOM             33       Unix domain error code
*    ERANGE           34       Unix range error code
*
* The default version of the file prints the function name,
* passed to it by the pointer fctnam, followed by the
* error condition.  The display is directed to the standard
* output device.  The routine then returns to the calling
* program.  Users may wish to modify the program to abort by
* calling exit() under severe error conditions such as domain
* errors.
*
* Since all error conditions pass control to this function,
* the display may be easily changed, eliminated, or directed
* to an error logging device.
*
*
* mconf.h
*
*/
```

```/*							nbdtrl.c
*
*	Negative binomial distribution
*
*
*
* SYNOPSIS:
*
* int k, n;
* long double p, y, nbdtrl();
*
* y = nbdtrl( k, n, p );
*
*
*
* DESCRIPTION:
*
* Returns the sum of the terms 0 through k of the negative
* binomial distribution:
*
*   k
*   --  ( n+j-1 )   n      j
*   >   (       )  p  (1-p)
*   --  (   j   )
*  j=0
*
* In a sequence of Bernoulli trials, this is the probability
* that k or fewer failures precede the nth success.
*
* The terms are not computed individually; instead the incomplete
* beta integral is employed, according to the formula
*
* y = nbdtr( k, n, p ) = incbet( n, k+1, p ).
*
* The arguments must be positive, with p ranging from 0 to 1.
*
*
*
* ACCURACY:
*
* Tested at random points (k,n,p) with k and n between 1 and 10,000
* and p between 0 and 1.
*
* arithmetic   domain     # trials      peak         rms
*    Absolute error:
*    IEEE      0,10000     10000       9.8e-15     2.1e-16
*
*/
```

```/*							nbdtrcl.c
*
*	Complemented negative binomial distribution
*
*
*
* SYNOPSIS:
*
* int k, n;
* long double p, y, nbdtrcl();
*
* y = nbdtrcl( k, n, p );
*
*
*
* DESCRIPTION:
*
* Returns the sum of the terms k+1 to infinity of the negative
* binomial distribution:
*
*   inf
*   --  ( n+j-1 )   n      j
*   >   (       )  p  (1-p)
*   --  (   j   )
*  j=k+1
*
* The terms are not computed individually; instead the incomplete
* beta integral is employed, according to the formula
*
* y = nbdtrc( k, n, p ) = incbet( k+1, n, 1-p ).
*
* The arguments must be positive, with p ranging from 0 to 1.
*
*
*
* ACCURACY:
*
* See incbetl.c.
*
*/
```

```/*							nbdtril
*
*	Functional inverse of negative binomial distribution
*
*
*
* SYNOPSIS:
*
* int k, n;
* long double p, y, nbdtril();
*
* p = nbdtril( k, n, y );
*
*
*
* DESCRIPTION:
*
* Finds the argument p such that nbdtr(k,n,p) is equal to y.
*
* ACCURACY:
*
* Tested at random points (a,b,y), with y between 0 and 1.
*
*               a,b                     Relative error:
* arithmetic  domain     # trials      peak         rms
*    IEEE     0,100
*/
```

```/*							ndtril.c
*
*	Inverse of Normal distribution function
*
*
*
* SYNOPSIS:
*
* long double x, y, ndtril();
*
* x = ndtril( y );
*
*
*
* DESCRIPTION:
*
* Returns the argument, x, for which the area under the
* Gaussian probability density function (integrated from
* minus infinity to x) is equal to y.
*
*
* For small arguments 0 < y < exp(-2), the program computes
* z = sqrt( -2 log(y) );  then the approximation is
* x = z - log(z)/z  - (1/z) P(1/z) / Q(1/z) .
* For larger arguments,  x/sqrt(2 pi) = w + w^3 R(w^2)/S(w^2)) ,
* where w = y - 0.5 .
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain        # trials      peak         rms
*  Arguments uniformly distributed:
*    IEEE       0, 1           5000       7.8e-19     9.9e-20
*  Arguments exponentially distributed:
*    IEEE     exp(-11355),-1  30000       1.7e-19     4.3e-20
*
*
* ERROR MESSAGES:
*
*   message         condition    value returned
* ndtril domain      x <= 0        -MAXNUML
* ndtril domain      x >= 1         MAXNUML
*
*/
```

```/*							ndtrl.c
*
*	Normal distribution function
*
*
*
* SYNOPSIS:
*
* long double x, y, ndtrl();
*
* y = ndtrl( x );
*
*
*
* DESCRIPTION:
*
* Returns the area under the Gaussian probability density
* function, integrated from minus infinity to x:
*
*                            x
*                             -
*                   1        | |          2
*    ndtr(x)  = ---------    |    exp( - t /2 ) dt
*               sqrt(2pi)  | |
*                           -
*                          -inf.
*
*             =  ( 1 + erf(z) ) / 2
*             =  erfc(z) / 2
*
* where z = x/sqrt(2). Computation is via the functions
* erf and erfc with care to avoid error amplification in computing exp(-x^2).
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    IEEE     -13,0        30000       7.7e-19     1.0e-19
*    IEEE     -106.5,-2    30000       4.2e-19     7.2e-20
*    IEEE       0,3        30000       1.0e-19     2.4e-20
*
*
* ERROR MESSAGES:
*
*   message         condition           value returned
* erfcl underflow    x^2 / 2 > MAXLOGL        0.0
*
*/
```

```/*							erfl.c
*
*	Error function
*
*
*
* SYNOPSIS:
*
* long double x, y, erfl();
*
* y = erfl( x );
*
*
*
* DESCRIPTION:
*
* The integral is
*
*                           x
*                            -
*                 2         | |          2
*   erf(x)  =  --------     |    exp( - t  ) dt.
*              sqrt(pi)   | |
*                          -
*                           0
*
* The magnitude of x is limited to about 106.56 for IEEE
* arithmetic; 1 or -1 is returned outside this range.
*
* For 0 <= |x| < 1, erf(x) = x * P6(x^2)/Q6(x^2); otherwise
* erf(x) = 1 - erfc(x).
*
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    IEEE      0,1         50000       2.0e-19     5.7e-20
*
*/
```

```/*							erfcl.c
*
*	Complementary error function
*
*
*
* SYNOPSIS:
*
* long double x, y, erfcl();
*
* y = erfcl( x );
*
*
*
* DESCRIPTION:
*
*
*  1 - erf(x) =
*
*                           inf.
*                             -
*                  2         | |          2
*   erfc(x)  =  --------     |    exp( - t  ) dt
*               sqrt(pi)   | |
*                           -
*                            x
*
*
* For small x, erfc(x) = 1 - erf(x); otherwise rational
* approximations are computed.
*
* A special function expx2l.c is used to suppress error amplification
* in computing exp(-x^2).
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    IEEE      0,13        50000      8.4e-19      9.7e-20
*    IEEE      6,106.56    20000      2.9e-19      7.1e-20
*
*
* ERROR MESSAGES:
*
*   message          condition              value returned
* erfcl underflow    x^2 > MAXLOGL              0.0
*
*
*/
```

```/*							pdtrl.c
*
*	Poisson distribution
*
*
*
* SYNOPSIS:
*
* int k;
* long double m, y, pdtrl();
*
* y = pdtrl( k, m );
*
*
*
* DESCRIPTION:
*
* Returns the sum of the first k terms of the Poisson
* distribution:
*
*   k         j
*   --   -m  m
*   >   e    --
*   --       j!
*  j=0
*
* The terms are not summed directly; instead the incomplete
* gamma integral is employed, according to the relation
*
* y = pdtr( k, m ) = igamc( k+1, m ).
*
* The arguments must both be positive.
*
*
*
* ACCURACY:
*
* See igamc().
*
*/
```

```/*							pdtrcl()
*
*	Complemented poisson distribution
*
*
*
* SYNOPSIS:
*
* int k;
* long double m, y, pdtrcl();
*
* y = pdtrcl( k, m );
*
*
*
* DESCRIPTION:
*
* Returns the sum of the terms k+1 to infinity of the Poisson
* distribution:
*
*  inf.       j
*   --   -m  m
*   >   e    --
*   --       j!
*  j=k+1
*
* The terms are not summed directly; instead the incomplete
* gamma integral is employed, according to the formula
*
* y = pdtrc( k, m ) = igam( k+1, m ).
*
* The arguments must both be positive.
*
*
*
* ACCURACY:
*
* See igam.c.
*
*/
```

```/*							pdtril()
*
*	Inverse Poisson distribution
*
*
*
* SYNOPSIS:
*
* int k;
* long double m, y, pdtrl();
*
* m = pdtril( k, y );
*
*
*
*
* DESCRIPTION:
*
* Finds the Poisson variable x such that the integral
* from 0 to x of the Poisson density is equal to the
* given probability y.
*
* This is accomplished using the inverse gamma integral
* function and the relation
*
*    m = igami( k+1, y ).
*
*
*
*
* ACCURACY:
*
* See igami.c.
*
* ERROR MESSAGES:
*
*   message         condition      value returned
* pdtri domain    y < 0 or y >= 1       0.0
*                     k < 0
*
*/
```

```/*							polevll.c
*							p1evll.c
*
*	Evaluate polynomial
*
*
*
* SYNOPSIS:
*
* int N;
* long double x, y, coef[N+1], polevl[];
*
* y = polevll( x, coef, N );
*
*
*
* DESCRIPTION:
*
* Evaluates polynomial of degree N:
*
*                     2          N
* y  =  C  + C x + C x  +...+ C x
*        0    1     2          N
*
* Coefficients are stored in reverse order:
*
* coef = C  , ..., coef[N] = C  .
*            N                   0
*
*  The function p1evll() assumes that coef[N] = 1.0 and is
* omitted from the array.  Its calling arguments are
* otherwise the same as polevll().
*
*  This module also contains the following globally declared constants:
* MAXNUML = 1.189731495357231765021263853E4932L;
* MACHEPL = 5.42101086242752217003726400434970855712890625E-20L;
* MAXLOGL =  1.1356523406294143949492E4L;
* MINLOGL = -1.1355137111933024058873E4L;
* LOGE2L  = 6.9314718055994530941723E-1L;
* LOG2EL  = 1.4426950408889634073599E0L;
* PIL     = 3.1415926535897932384626L;
* PIO2L   = 1.5707963267948966192313L;
* PIO4L   = 7.8539816339744830961566E-1L;
*
* SPEED:
*
* In the interest of speed, there are no checks for out
* of bounds arithmetic.  This routine is used by most of
* the functions in the library.  Depending on available
* equipment features, the user may wish to rewrite the
* program in microcode or assembly language.
*
*/
```

```/*							powil.c
*
*	Real raised to integer power, long double precision
*
*
*
* SYNOPSIS:
*
* long double x, y, powil();
* int n;
*
* y = powil( x, n );
*
*
*
* DESCRIPTION:
*
* Returns argument x raised to the nth power.
* The routine efficiently decomposes n as a sum of powers of
* two. The desired power is a product of two-to-the-kth
* powers of x.  Thus to compute the 32767 power of x requires
* 28 multiplications instead of 32767 multiplications.
*
*
*
* ACCURACY:
*
*
*                      Relative error:
* arithmetic   x domain   n domain  # trials      peak         rms
*    IEEE     .001,1000  -1022,1023  50000       4.3e-17     7.8e-18
*    IEEE        1,2     -1022,1023  20000       3.9e-17     7.6e-18
*    IEEE     .99,1.01     0,8700    10000       3.6e-16     7.2e-17
*
* Returns MAXNUM on overflow, zero on underflow.
*
*/
```

```/*							powl.c
*
*	Power function, long double precision
*
*
*
* SYNOPSIS:
*
* long double x, y, z, powl();
*
* z = powl( x, y );
*
*
*
* DESCRIPTION:
*
* Computes x raised to the yth power.  Analytically,
*
*      x**y  =  exp( y log(x) ).
*
* Following Cody and Waite, this program uses a lookup table
* of 2**-i/32 and pseudo extended precision arithmetic to
* obtain several extra bits of accuracy in both the logarithm
* and the exponential.
*
*
*
* ACCURACY:
*
* The relative error of pow(x,y) can be estimated
* by   y dl ln(2),   where dl is the absolute error of
* the internally computed base 2 logarithm.  At the ends
* of the approximation interval the logarithm equal 1/32
* and its relative error is about 1 lsb = 1.1e-19.  Hence
* the predicted relative error in the result is 2.3e-21 y .
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*
*    IEEE     +-1000       40000      2.8e-18      3.7e-19
* .001 < x < 1000, with log(x) uniformly distributed.
* -1000 < y < 1000, y uniformly distributed.
*
*    IEEE     0,8700       60000      6.5e-18      1.0e-18
* 0.99 < x < 1.01, 0 < y < 8700, uniformly distributed.
*
*
* ERROR MESSAGES:
*
*   message         condition      value returned
* pow overflow     x**y > MAXNUM      INFINITY
* pow underflow   x**y < 1/MAXNUM       0.0
* pow domain      x<0 and y noninteger  0.0
*
*/
```

```/*							sinhl.c
*
*	Hyperbolic sine, long double precision
*
*
*
* SYNOPSIS:
*
* long double x, y, sinhl();
*
* y = sinhl( x );
*
*
*
* DESCRIPTION:
*
* Returns hyperbolic sine of argument in the range MINLOGL to
* MAXLOGL.
*
* The range is partitioned into two segments.  If |x| <= 1, a
* rational function of the form x + x**3 P(x)/Q(x) is employed.
* Otherwise the calculation is sinh(x) = ( exp(x) - exp(-x) )/2.
*
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    IEEE       -2,2       10000       1.5e-19     3.9e-20
*    IEEE     +-10000      30000       1.1e-19     2.8e-20
*
*/
```

```/*							sinl.c
*
*	Circular sine, long double precision
*
*
*
* SYNOPSIS:
*
* long double x, y, sinl();
*
* y = sinl( x );
*
*
*
* DESCRIPTION:
*
* Range reduction is into intervals of pi/4.  The reduction
* error is nearly eliminated by contriving an extended precision
* modular arithmetic.
*
* Two polynomial approximating functions are employed.
* Between 0 and pi/4 the sine is approximated by the Cody
* and Waite polynomial form
*      x + x**3 P(x**2) .
* Between pi/4 and pi/2 the cosine is represented as
*      1 - .5 x**2 + x**4 Q(x**2) .
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain      # trials      peak         rms
*    IEEE     +-5.5e11      200,000    1.2e-19     2.9e-20
*
* ERROR MESSAGES:
*
*   message           condition        value returned
* sin total loss   x > 2**39               0.0
*
* Loss of precision occurs for x > 2**39 = 5.49755813888e11.
* The routine as implemented flags a TLOSS error for
* x > 2**39 and returns 0.0.
*/
```

```/*							cosl.c
*
*	Circular cosine, long double precision
*
*
*
* SYNOPSIS:
*
* long double x, y, cosl();
*
* y = cosl( x );
*
*
*
* DESCRIPTION:
*
* Range reduction is into intervals of pi/4.  The reduction
* error is nearly eliminated by contriving an extended precision
* modular arithmetic.
*
* Two polynomial approximating functions are employed.
* Between 0 and pi/4 the cosine is approximated by
*      1 - .5 x**2 + x**4 Q(x**2) .
* Between pi/4 and pi/2 the sine is represented by the Cody
* and Waite polynomial form
*      x  +  x**3 P(x**2) .
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain      # trials      peak         rms
*    IEEE     +-5.5e11       50000      1.2e-19     2.9e-20
*/
```

```/*							sqrtl.c
*
*	Square root, long double precision
*
*
*
* SYNOPSIS:
*
* long double x, y, sqrtl();
*
* y = sqrtl( x );
*
*
*
* DESCRIPTION:
*
* Returns the square root of x.
*
* Range reduction involves isolating the power of two of the
* argument and using a polynomial approximation to obtain
* a rough value for the square root.  Then Heron's iteration
* is used three times to converge to an accurate value.
*
* Note, some arithmetic coprocessors such as the 8087 and
* 68881 produce correctly rounded square roots, which this
* routine will not.
*
* ACCURACY:
*
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    IEEE      0,10        30000       8.1e-20     3.1e-20
*
*
* ERROR MESSAGES:
*
*   message         condition      value returned
* sqrt domain        x < 0            0.0
*
*/
```

```/*							stdtrl.c
*
*	Student's t distribution
*
*
*
* SYNOPSIS:
*
* long double p, t, stdtrl();
* int k;
*
* p = stdtrl( k, t );
*
*
* DESCRIPTION:
*
* Computes the integral from minus infinity to t of the Student
* t distribution with integer k > 0 degrees of freedom:
*
*                                      t
*                                      -
*                                     | |
*              -                      |         2   -(k+1)/2
*             | ( (k+1)/2 )           |  (     x   )
*       ----------------------        |  ( 1 + --- )        dx
*                     -               |  (      k  )
*       sqrt( k pi ) | ( k/2 )        |
*                                   | |
*                                    -
*                                   -inf.
*
* Relation to incomplete beta integral:
*
*        1 - stdtr(k,t) = 0.5 * incbet( k/2, 1/2, z )
* where
*        z = k/(k + t**2).
*
* For t < -1.6, this is the method of computation.  For higher t,
* a direct method is derived from integration by parts.
* Since the function is symmetric about t=0, the area under the
* right tail of the density is found by calling the function
* with -t instead of t.
*
* ACCURACY:
*
* Tested at random 1 <= k <= 100.  The "domain" refers to t.
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    IEEE     -100,-1.6    10000       5.7e-18     9.8e-19
*    IEEE     -1.6,100     10000       3.8e-18     1.0e-19
*/
```

```/*							stdtril.c
*
*	Functional inverse of Student's t distribution
*
*
*
* SYNOPSIS:
*
* long double p, t, stdtril();
* int k;
*
* t = stdtril( k, p );
*
*
* DESCRIPTION:
*
* Given probability p, finds the argument t such that stdtrl(k,t)
* is equal to p.
*
* ACCURACY:
*
* Tested at random 1 <= k <= 100.  The "domain" refers to p:
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    IEEE       0,1        3500       4.2e-17     4.1e-18
*/
```

```/*							tanhl.c
*
*	Hyperbolic tangent, long double precision
*
*
*
* SYNOPSIS:
*
* long double x, y, tanhl();
*
* y = tanhl( x );
*
*
*
* DESCRIPTION:
*
* Returns hyperbolic tangent of argument in the range MINLOGL to
* MAXLOGL.
*
* A rational function is used for |x| < 0.625.  The form
* x + x**3 P(x)/Q(x) of Cody & Waite is employed.
* Otherwise,
*    tanh(x) = sinh(x)/cosh(x) = 1  -  2/(exp(2x) + 1).
*
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    IEEE      -2,2        30000       1.3e-19     2.4e-20
*
*/
```

```/*							tanl.c
*
*	Circular tangent, long double precision
*
*
*
* SYNOPSIS:
*
* long double x, y, tanl();
*
* y = tanl( x );
*
*
*
* DESCRIPTION:
*
* Returns the circular tangent of the radian argument x.
*
* Range reduction is modulo pi/4.  A rational function
*       x + x**3 P(x**2)/Q(x**2)
* is employed in the basic interval [0, pi/4].
*
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    IEEE     +-1.07e9       30000     1.9e-19     4.8e-20
*
* ERROR MESSAGES:
*
*   message         condition          value returned
* tan total loss   x > 2^39                0.0
*
*/
```

```/*							cotl.c
*
*	Circular cotangent, long double precision
*
*
*
* SYNOPSIS:
*
* long double x, y, cotl();
*
* y = cotl( x );
*
*
*
* DESCRIPTION:
*
* Returns the circular cotangent of the radian argument x.
*
* Range reduction is modulo pi/4.  A rational function
*       x + x**3 P(x**2)/Q(x**2)
* is employed in the basic interval [0, pi/4].
*
*
*
* ACCURACY:
*
*                      Relative error:
* arithmetic   domain     # trials      peak         rms
*    IEEE     +-1.07e9      30000      1.9e-19     5.1e-20
*
*
* ERROR MESSAGES:
*
*   message         condition          value returned
* cot total loss   x > 2^39                0.0
* cot singularity  x = 0                  INFINITYL
*
*/
```

```/*							unityl.c
*
* Relative error approximations for function arguments near
* unity.
*
*    cosm1(x) = cos(x) - 1
*
*/
```

```/*							ynl.c
*
*	Bessel function of second kind of integer order
*
*
*
* SYNOPSIS:
*
* long double x, y, ynl();
* int n;
*
* y = ynl( n, x );
*
*
*
* DESCRIPTION:
*
* Returns Bessel function of order n, where n is a
* (possibly negative) integer.
*
* The function is evaluated by forward recurrence on
* n, starting with values computed by the routines
* y0l() and y1l().
*
* If n = 0 or 1 the routine for y0l or y1l is called
* directly.
*
*
*
* ACCURACY:
*
*
*       Absolute error, except relative error when y > 1.
*       x >= 0,  -30 <= n <= +30.
* arithmetic   domain     # trials      peak         rms
*    IEEE     -30, 30       10000       1.3e-18     1.8e-19
*
*
* ERROR MESSAGES:
*
*   message         condition      value returned
* ynl singularity   x = 0              MAXNUML
* ynl overflow                         MAXNUML
*
* Spot checked against tables for x, n between 0 and 100.
*
*/
```

Get ldouble.zip:
Last update: 5 October 2014