Cephes Mathematical Library

Up to home page:

  Get 128bit.tgz:

 


Documentation for single precision functions.
Documentation for double precision functions.
Documentation for 80-bit long double functions.
Documentation for 128-bit long double functions.
Documentation for extended precision functions.

128-bit Long Double Precision Functions

Select function name for additional information. For other precisions, see the archives and descriptions listed above.
  • acoshll, Inverse hyperbolic cosine
  • asinhll, Inverse hyperbolic sine
  • asinll, Inverse circular sine
  • acosll, Inverse circular cosine
  • atanhll, Inverse hyperbolic tangent
  • atanll, Inverse circular tangent
  • atan2ll, Quadrant correct inverse circular tangent
  • cbrtll, Cube root
  • coshll, Hyperbolic cosine
  • exp10ll, Base 10 exponential function
  • exp2ll, Base 2 exponential function
  • expll, Exponential function
  • expm1ll, Exponential function, minus 1
  • ceilll, Round up to integer
  • floorll, Round down to integer
  • frexpll, Extract exponent and significand
  • ldexpll, Apply exponent
  • fabsll, Absolute value
  • signbitll, Extract sign
  • isnanll, Test for not a number
  • isfinitell, Test for infinity
  • ieee, Extended precision arithmetic
  • j0ll, Bessel function, first kind, order 0
  • y0ll, Bessel function, second kind, order 0
  • j1ll, Bessel function, first kind, order 1
  • y1ll, Bessel function, second kind, order 1
  • jnll, Bessel function, first kind, order 1
  • lgammall, Logarithm of gamma function
  • log10ll, Common logarithm
  • log1pll, Relative error logarithm
  • log2ll, Base 2 logarithm
  • logll, Natural logarithm
  • ndtrll, Normal distribution function
  • erfll, Error function
  • ercfll, Error function
  • mtherr, Error handling
  • polevll, Evaluate polynomial
  • p1evll, Evaluate polynomial
  • powill, Real raised to integer power
  • powll, Power function
  • sinhll, Hyperbolic sine
  • sinll, Circular sine
  • cosll, Circular cosine
  • sqrtll, Square root
  • tanhll, Hyperbolic tangent
  • tanll, Circular tangent
  • cotll, Circular cotangent
  •  
    /*							acoshl.c
     *
     *	Inverse hyperbolic cosine, 128-bit long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, acoshl();
     *
     * y = acoshl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns inverse hyperbolic cosine of argument.
     *
     * If 1 <= x < 1.5, a rational approximation
     *
     *	sqrt(2z) * P(z)/Q(z)
     *
     * where z = x-1, is used.  Otherwise,
     *
     * acosh(x)  =  log( x + sqrt( (x-1)(x+1) ).
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      1,3        100,000      4.1e-34     7.3e-35
     *
     *
     * ERROR MESSAGES:
     *
     *   message         condition      value returned
     * acoshl domain      |x| < 1            0.0
     *
     */
    
     
    /*							asinhl.c
     *
     *	Inverse hyperbolic sine, 128-bit long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, asinhl();
     *
     * y = asinhl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns inverse hyperbolic sine of argument.
     *
     * If |x| < 0.5, the function is approximated by a rational
     * form  x + x**3 P(x)/Q(x).  Otherwise,
     *
     *     asinh(x) = log( x + sqrt(1 + x*x) ).
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE     -2,2         100,000     2.8e-34     6.7e-35
     *
     */
    
     
    /*							asinl.c
     *
     *	Inverse circular sine, 128-bit long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * double x, y, asinl();
     *
     * y = asinl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns radian angle between -pi/2 and +pi/2 whose sine is x.
     *
     * A rational function of the form x + x**3 P(x**2)/Q(x**2)
     * is used for |x| in the interval [0, 0.5].  If |x| > 0.5 it is
     * transformed by the identity
     *
     *    asin(x) = pi/2 - 2 asin( sqrt( (1-x)/2 ) ).
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE     -1, 1       100,000      3.7e-34      6.4e-35
     *
     *
     * ERROR MESSAGES:
     *
     *   message         condition      value returned
     * asin domain        |x| > 1           0.0
     *
     */
    
     
    /*							acosl()
     *
     *	Inverse circular cosine, long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * double x, y, acosl();
     *
     * y = acosl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns radian angle between -pi/2 and +pi/2 whose cosine
     * is x.
     *
     * Analytically, acos(x) = pi/2 - asin(x).  However if |x| is
     * near 1, there is cancellation error in subtracting asin(x)
     * from pi/2.  Hence if x < -0.5,
     *
     *    acos(x) =	 pi - 2.0 * asin( sqrt((1+x)/2) );
     *
     * or if x > +0.5,
     *
     *    acos(x) =	 2.0 * asin(  sqrt((1-x)/2) ).
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE     -1, 1       100,000      2.1e-34      5.6e-35
     *
     *
     * ERROR MESSAGES:
     *
     *   message         condition      value returned
     * asin domain        |x| > 1           0.0
     */
    
     
    /*							atanhl.c
     *
     *	Inverse hyperbolic tangent, 128-bit long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, atanhl();
     *
     * y = atanhl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns inverse hyperbolic tangent of argument in the range
     * MINLOGL to MAXLOGL.
     *
     * If |x| < 0.5, the rational form x + x**3 P(x)/Q(x) is
     * employed.  Otherwise,
     *        atanh(x) = 0.5 * log( (1+x)/(1-x) ).
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      -1,1       100,000      2.0e-34     4.6e-35
     *
     */
    
     
    /*							atanl.c
     *
     *	Inverse circular tangent, 128-bit long double precision
     *      (arctangent)
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, atanl();
     *
     * y = atanl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns radian angle between -pi/2 and +pi/2 whose tangent
     * is x.
     *
     * Range reduction is from four intervals into the interval
     * from zero to  tan( pi/8 ).  The approximant uses a rational
     * function of degree 3/4 of the form x + x**3 P(x)/Q(x).
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      -10, 10    100,000      2.6e-34     6.5e-35
     *
     */
    
     
    /*							atan2l()
     *
     *	Quadrant correct inverse circular tangent,
     *	long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, z, atan2l();
     *
     * z = atan2l( y, x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns radian angle whose tangent is y/x.
     * Define compile time symbol ANSIC = 1 for ANSI standard,
     * range -PI < z <= +PI, args (y,x); else ANSIC = 0 for range
     * 0 to 2PI, args (x,y).
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      -10, 10    100,000      3.2e-34      5.9e-35
     * See atan.c.
     *
     */
    
     
    /*							cbrtl.c
     *
     *	Cube root, long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, cbrtl();
     *
     * y = cbrtl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the cube root of the argument, which may be negative.
     *
     * Range reduction involves determining the power of 2 of
     * the argument.  A polynomial of degree 2 applied to the
     * mantissa, and multiplication by the cube root of 1, 2, or 4
     * approximates the root to within about 0.1%.  Then Newton's
     * iteration is used three times to converge to an accurate
     * result.
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE     .125,8        80000      1.2e-34     3.8e-35
     *    IEEE    exp(+-707)    100000      1.3e-34     4.3e-35
     *
     */
    
     
    /*							coshl.c
     *
     *	Hyperbolic cosine, long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, coshl();
     *
     * y = coshl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns hyperbolic cosine of argument in the range MINLOGL to
     * MAXLOGL.
     *
     * cosh(x)  =  ( exp(x) + exp(-x) )/2.
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE     +-10000      26,000       2.5e-34     8.6e-35
     *
     *
     * ERROR MESSAGES:
     *
     *   message         condition      value returned
     * cosh overflow    |x| > MAXLOGL       MAXNUML
     *
     *
     */
    
     
    /*							exp10l.c
     *
     *	Base 10 exponential function, long double precision
     *      (Common antilogarithm)
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, exp10l()
     *
     * y = exp10l( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns 10 raised to the x power.
     *
     * Range reduction is accomplished by expressing the argument
     * as 10**x = 2**n 10**f, with |f| < 0.5 log10(2).
     * The Pade' form
     *
     *     1 + 2x P(x**2)/( Q(x**2) - P(x**2) )
     *
     * is used to approximate 10**f.
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      +-4900     100,000      2.1e-34     4.7e-35
     *
     * ERROR MESSAGES:
     *
     *   message         condition      value returned
     * exp10l underflow    x < -MAXL10        0.0
     * exp10l overflow     x > MAXL10       MAXNUM
     *
     * IEEE arithmetic: MAXL10 = 4932.0754489586679023819
     *
     */
    
     
    /*							exp2l.c
     *
     *	Base 2 exponential function, 128-bit long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, exp2l();
     *
     * y = exp2l( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns 2 raised to the x power.
     *
     * Range reduction is accomplished by separating the argument
     * into an integer k and fraction f such that
     *     x    k  f
     *    2  = 2  2.
     *
     * A Pade' form
     *
     *   1 + 2x P(x**2) / (Q(x**2) - x P(x**2) )
     *
     * approximates 2**x in the basic range [-0.5, 0.5].
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      +-16300    100,000      2.0e-34     4.8e-35
     *
     *
     * See exp.c for comments on error amplification.
     *
     *
     * ERROR MESSAGES:
     *
     *   message         condition      value returned
     * exp2l underflow   x < -16382        0.0
     * exp2l overflow    x >= 16384       MAXNUM
     *
     */
    
     
    /*							expl.c
     *
     *	Exponential function, 128-bit long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, expl();
     *
     * y = expl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns e (2.71828...) raised to the x power.
     *
     * Range reduction is accomplished by separating the argument
     * into an integer k and fraction f such that
     *
     *     x    k  f
     *    e  = 2  e.
     *
     * A Pade' form of degree 2/3 is used to approximate exp(f) - 1
     * in the basic range [-0.5 ln 2, 0.5 ln 2].
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      +-MAXLOG    100,000     2.6e-34     8.6e-35
     *
     *
     * Error amplification in the exponential function can be
     * a serious matter.  The error propagation involves
     * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ),
     * which shows that a 1 lsb error in representing X produces
     * a relative error of X times 1 lsb in the function.
     * While the routine gives an accurate result for arguments
     * that are exactly represented by a long double precision
     * computer number, the result contains amplified roundoff
     * error for large arguments not exactly represented.
     *
     *
     * ERROR MESSAGES:
     *
     *   message         condition      value returned
     * exp underflow    x < MINLOG         0.0
     * exp overflow     x > MAXLOG         MAXNUM
     *
     */
    
     
    /*							expm1ll.c
     *
     *	Exponential function, minus 1
     *      128-bit long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, expm1l();
     *
     * y = expm1l( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns e (2.71828...) raised to the x power, minus 1.
     *
     * Range reduction is accomplished by separating the argument
     * into an integer k and fraction f such that 
     *
     *     x    k  f
     *    e  = 2  e.
     *
     * An expansion x + .5 x^2 + x^3 R(x) approximates exp(f) - 1
     * in the basic range [-0.5 ln 2, 0.5 ln 2].
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE    -79,+MAXLOG    100,000     1.7e-34     4.5e-35
     *
     * ERROR MESSAGES:
     *
     *   message         condition      value returned
     * expm1 overflow    x > MAXLOG         MAXNUM
     *
     */
    
                   
    /*                                                      ceill()
     *                                                      floorl()
     *                                                      frexpl()
     *                                                      ldexpl()
     *                                                      fabsl()
     *							signbitl()
     *							isnanl()
     *							isfinitel()
     *
     *      Floating point numeric utilities
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y;
     * long double ceill(), floorl(), frexpl(), ldexpl(), fabsl();
     * int signbitl(), isnanl(), isfinitel();
     * int expnt, n;
     *
     * y = floorl(x);
     * y = ceill(x);
     * y = frexpl( x, &expnt );
     * y = ldexpl( x, n );
     * y = fabsl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * All four routines return a long double precision floating point
     * result.
     *
     * floorl() returns the largest integer less than or equal to x.
     * It truncates toward minus infinity.
     *
     * ceill() returns the smallest integer greater than or equal
     * to x.  It truncates toward plus infinity.
     *
     * frexpl() extracts the exponent from x.  It returns an integer
     * power of two to expnt and the significand between 0.5 and 1
     * to y.  Thus  x = y * 2**expn.
     *
     * ldexpl() multiplies x by 2**n.
     *
     * fabsl() returns the absolute value of its argument.
     *
     * signbitl(x) returns 1 if the sign bit of x is 1, else 0.
     *
     * These functions are part of the standard C run time library
     * for some but not all C compilers.  The ones supplied are
     * written in C for IEEE arithmetic.  They should
     * be used only if your compiler library does not already have
     * them.
     *
     * The IEEE versions assume that denormal numbers are implemented
     * in the arithmetic.  Some modifications will be required if
     * the arithmetic has abrupt rather than gradual underflow.
     */
    
     
    /*							ieee.c
     *
     *    Extended precision IEEE binary floating point arithmetic routines
     *
     * Numbers are stored in C language as arrays of 16-bit unsigned
     * short integers.  The arguments of the routines are pointers to
     * the arrays.
     *
     *
     * External e type data structure, simulates Intel 8087 chip
     * temporary real format but possibly with a larger significand:
     *
     *	NE-1 significand words	(least significant word first,
     *				 most significant bit is normally set)
     *	exponent		(value = EXONE for 1.0,
     *				top bit is the sign)
     *
     *
     * Internal data structure of a number (a "word" is 16 bits):
     *
     * ei[0]	sign word	(0 for positive, 0xffff for negative)
     * ei[1]	biased exponent	(value = EXONE for the number 1.0)
     * ei[2]	high guard word	(always zero after normalization)
     * ei[3]
     * to ei[NI-2]	significand	(NI-4 significand words,
     *				 most significant word first,
     *				 most significant bit is set)
     * ei[NI-1]	low guard word	(0x8000 bit is rounding place)
     *
     *
     *
     *		Routines for external format numbers
     *
     *	asctoe( string, e )	ASCII string to extended double e type
     *	asctoe64( string, &d )	ASCII string to long double
     *	asctoe53( string, &d )	ASCII string to double
     *	asctoe24( string, &f )	ASCII string to single
     *	asctoeg( string, e, prec ) ASCII string to specified precision
     *	e24toe( &f, e )		IEEE single precision to e type
     *	e53toe( &d, e )		IEEE double precision to e type
     *	e64toe( &d, e )		IEEE long double precision to e type
     *	eabs(e)			absolute value
     *	eadd( a, b, c )		c = b + a
     *	eclear(e)		e = 0
     *	ecmp (a, b)		Returns 1 if a > b, 0 if a == b,
     *				-1 if a < b, -2 if either a or b is a NaN.
     *	ediv( a, b, c )		c = b / a
     *	efloor( a, b )		truncate to integer, toward -infinity
     *	efrexp( a, exp, s )	extract exponent and significand
     *	eifrac( e, &l, frac )   e to long integer and e type fraction
     *	euifrac( e, &l, frac )  e to unsigned long integer and e type fraction
     *	einfin( e )		set e to infinity, leaving its sign alone
     *	eldexp( a, n, b )	multiply by 2**n
     *	emov( a, b )		b = a
     *	emul( a, b, c )		c = b * a
     *	eneg(e)			e = -e
     *	eround( a, b )		b = nearest integer value to a
     *	esub( a, b, c )		c = b - a
     *	e24toasc( &f, str, n )	single to ASCII string, n digits after decimal
     *	e53toasc( &d, str, n )	double to ASCII string, n digits after decimal
     *	e64toasc( &d, str, n )	long double to ASCII string
     *	etoasc( e, str, n )	e to ASCII string, n digits after decimal
     *	etoe24( e, &f )		convert e type to IEEE single precision
     *	etoe53( e, &d )		convert e type to IEEE double precision
     *	etoe64( e, &d )		convert e type to IEEE long double precision
     *	ltoe( &l, e )		long (32 bit) integer to e type
     *	ultoe( &l, e )		unsigned long (32 bit) integer to e type
     *      eisneg( e )             1 if sign bit of e != 0, else 0
     *      eisinf( e )             1 if e has maximum exponent (non-IEEE)
     *				or is infinite (IEEE)
     *      eisnan( e )             1 if e is a NaN
     *	esqrt( a, b )		b = square root of a
     *
     *
     *		Routines for internal format numbers
     *
     *	eaddm( ai, bi )		add significands, bi = bi + ai
     *	ecleaz(ei)		ei = 0
     *	ecleazs(ei)		set ei = 0 but leave its sign alone
     *	ecmpm( ai, bi )		compare significands, return 1, 0, or -1
     *	edivm( ai, bi )		divide  significands, bi = bi / ai
     *	emdnorm(ai,l,s,exp)	normalize and round off
     *	emovi( a, ai )		convert external a to internal ai
     *	emovo( ai, a )		convert internal ai to external a
     *	emovz( ai, bi )		bi = ai, low guard word of bi = 0
     *	emulm( ai, bi )		multiply significands, bi = bi * ai
     *	enormlz(ei)		left-justify the significand
     *	eshdn1( ai )		shift significand and guards down 1 bit
     *	eshdn8( ai )		shift down 8 bits
     *	eshdn6( ai )		shift down 16 bits
     *	eshift( ai, n )		shift ai n bits up (or down if n < 0)
     *	eshup1( ai )		shift significand and guards up 1 bit
     *	eshup8( ai )		shift up 8 bits
     *	eshup6( ai )		shift up 16 bits
     *	esubm( ai, bi )		subtract significands, bi = bi - ai
     *
     *
     * The result is always normalized and rounded to NI-4 word precision
     * after each arithmetic operation.
     *
     * Exception flags are NOT fully supported.
     *
     * Define INFINITIES in mconf.h for support of infinity; otherwise a
     * saturation arithmetic is implemented.
     *
     * Define NANS for support of Not-a-Number items; otherwise the
     * arithmetic will never produce a NaN output, and might be confused
     * by a NaN input.
     * If NaN's are supported, the output of ecmp(a,b) is -2 if
     * either a or b is a NaN. This means asking if(ecmp(a,b) < 0)
     * may not be legitimate. Use if(ecmp(a,b) == -1) for less-than
     * if in doubt.
     * Signaling NaN's are NOT supported; they are treated the same
     * as quiet NaN's.
     *
     * Denormals are always supported here where appropriate (e.g., not
     * for conversion to DEC numbers).
     */
    
     
    /*							j0l.c
     *
     *	Bessel function of order zero
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, j0l();
     *
     * y = j0l( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns Bessel function of first kind, order zero of the argument.
     *
     * The domain is divided into two major intervals [0, 2] and
     * (2, infinity). In the first interval the rational approximation
     * is J0(x) = 1 - x^2 / 4 + x^4 R(x^2)
     * The second interval is further partitioned into eight equal segments
     * of 1/x.
     *
     * J0(x) = sqrt(2/(pi x)) (P0(x) cos(X) - Q0(x) sin(X)),
     * X = x - pi/4,
     *
     * and the auxiliary functions are given by
     *
     * J0(x)cos(X) + Y0(x)sin(X) = sqrt( 2/(pi x)) P0(x),
     * P0(x) = 1 + 1/x^2 R(1/x^2)
     *
     * Y0(x)cos(X) - J0(x)sin(X) = sqrt( 2/(pi x)) Q0(x),
     * Q0(x) = 1/x (-.125 + 1/x^2 R(1/x^2))
     *
     *
     *
     * ACCURACY:
     *
     *                      Absolute error:
     * arithmetic   domain      # trials      peak         rms
     *    IEEE      0, 30       100000      1.7e-34      2.4e-35
     *
     */
    
     
    /*							y0l
     *
     *	Bessel function of the second kind, order zero
     *
     *
     *
     * SYNOPSIS:
     *
     * double x, y, y0l();
     *
     * y = y0l( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns Bessel function of the second kind, of order
     * zero, of the argument.
     *
     * The approximation is the same as for J0(x), and
     * Y0(x) = sqrt(2/(pi x)) (P0(x) sin(X) + Q0(x) cos(X)).
     *
     * ACCURACY:
     *
     *  Absolute error, when y0(x) < 1; else relative error:
     *
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      0, 30       100000      3.0e-34     2.7e-35
     *
     */
    
     
    /*							j1ll.c
     *
     *	Bessel function of order one
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, j1l();
     *
     * y = j1l( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns Bessel function of first kind, order one of the argument.
     *
     * The domain is divided into two major intervals [0, 2] and
     * (2, infinity). In the first interval the rational approximation is
     * J1(x) = .5x + x x^2 R(x^2)
     *
     * The second interval is further partitioned into eight equal segments
     * of 1/x.
     * J1(x) = sqrt(2/(pi x)) (P1(x) cos(X) - Q1(x) sin(X)),
     * X = x - 3 pi / 4,
     *
     * and the auxiliary functions are given by
     *
     * J1(x)cos(X) + Y1(x)sin(X) = sqrt( 2/(pi x)) P1(x),
     * P1(x) = 1 + 1/x^2 R(1/x^2)
     *
     * Y1(x)cos(X) - J1(x)sin(X) = sqrt( 2/(pi x)) Q1(x),
     * Q1(x) = 1/x (.375 + 1/x^2 R(1/x^2)).
     *
     *
     *
     * ACCURACY:
     *
     *                      Absolute error:
     * arithmetic   domain      # trials      peak         rms
     *    IEEE      0, 30       100000      2.8e-34      2.7e-35
     *
     *
     */
    
     
    /*							y1l
     *
     *	Bessel function of the second kind, order one
     *
     *
     *
     * SYNOPSIS:
     *
     * double x, y, y1l();
     *
     * y = y1l( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns Bessel function of the second kind, of order
     * one, of the argument.
     *
     * The domain is divided into two major intervals [0, 2] and
     * (2, infinity). In the first interval the rational approximation is
     * Y1(x) = 2/pi * (log(x) * J1(x) - 1/x) + x R(x^2) .
     * In the second interval the approximation is the same as for J1(x), and
     * Y1(x) = sqrt(2/(pi x)) (P1(x) sin(X) + Q1(x) cos(X)),
     * X = x - 3 pi / 4.
     *
     * ACCURACY:
     *
     *  Absolute error, when y0(x) < 1; else relative error:
     *
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      0, 30       100000      2.7e-34     2.9e-35
     *
     */
    
     
    /*                                                      jnll.c
     *
     *      Bessel function of integer order
     *
     *
     *
     * SYNOPSIS:
     *
     * int n;
     * long double x, y, jnl();
     *
     * y = jnl( n, x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns Bessel function of order n, where n is a
     * (possibly negative) integer.
     *
     * The ratio of jn(x) to j0(x) is computed by backward
     * recurrence.  First the ratio jn/jn-1 is found by a
     * continued fraction expansion.  Then the recurrence
     * relating successive orders is applied until j0 or j1 is
     * reached.
     *
     * If n = 0 or 1 the routine for j0 or j1 is called
     * directly.
     *
     *
     *
     * ACCURACY:
     *
     *                      Absolute error:
     * arithmetic   domain      # trials      peak         rms
     *    IEEE     -30, 30        10000      2.6e-34     4.6e-35
     *
     *
     * Not suitable for large n or x.
     *
     */
    
     
    /*                                                      lgammall.c
     *
     *      Natural logarithm of gamma function
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, lgammal();
     * extern int sgngam;
     *
     * y = lgammal(x);
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the base e (2.718...) logarithm of the absolute
     * value of the gamma function of the argument.
     * The sign (+1 or -1) of the gamma function is returned in a
     * global (extern) variable named sgngam.
     *
     * The positive domain is partitioned into numerous segments for approximation.
     * For x > 10,
     *   log gamma(x) = (x - 0.5) log(x) - x + log sqrt(2 pi) + 1/x R(1/x^2)
     * Near the minimum at x = x0 = 1.46... the approximation is
     *   log gamma(x0 + z) = log gamma(x0) + z^2 P(z)/Q(z)
     * for small z.
     * Elsewhere between 0 and 10,
     *   log gamma(n + z) = log gamma(n) + z P(z)/Q(z)
     * for various selected n and small z.
     *
     * The cosecant reflection formula is employed for negative arguments.
     *
     * Arguments greater than MAXLGML (10^4928) return MAXNUML.
     *
     *
     * ACCURACY:
     *
     *
     * arithmetic      domain        # trials     peak         rms
     *                                            Relative error:
     *    IEEE         10, 30         100000     3.9e-34     9.8e-35
     *    IEEE          0, 10         100000     3.8e-34     5.3e-35
     *                                            Absolute error:
     *    IEEE         -10, 0         100000     8.0e-34     8.0e-35
     *    IEEE         -30, -10       100000     4.4e-34     1.0e-34
     *    IEEE        -100, 100       100000                 1.0e-34
     *
     * The absolute error criterion is the same as relative error
     * when the function magnitude is greater than one but it is absolute
     * when the magnitude is less than one.
     *
     */
    
     
    /*							log10l.c
     *
     *	Common logarithm, long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, log10l();
     *
     * y = log10l( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the base 10 logarithm of x.
     *
     * The argument is separated into its exponent and fractional
     * parts.  If the exponent is between -1 and +1, the logarithm
     * of the fraction is approximated by
     *
     *     log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
     *
     * Otherwise, setting  z = 2(x-1)/x+1),
     * 
     *     log(x) = z + z**3 P(z)/Q(z).
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      0.5, 2.0     30000      2.3e-34     4.9e-35
     *    IEEE     exp(+-10000)  30000      1.0e-34     4.1e-35
     *
     * In the tests over the interval exp(+-10000), the logarithms
     * of the random arguments were uniformly distributed over
     * [-10000, +10000].
     *
     * ERROR MESSAGES:
     *
     * log singularity:  x = 0; returns MINLOG
     * log domain:       x < 0; returns MINLOG
     */
    
     
    /*							log1pl.c
     *
     *      Relative error logarithm
     *	Natural logarithm of 1+x, 128-bit long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, log1pl();
     *
     * y = log1pl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the base e (2.718...) logarithm of 1+x.
     *
     * The argument 1+x is separated into its exponent and fractional
     * parts.  If the exponent is between -1 and +1, the logarithm
     * of the fraction is approximated by
     *
     *     log(1+x) = x - 0.5 x^2 + x^3 P(x)/Q(x).
     *
     * Otherwise, setting  z = 2(x-1)/x+1),
     * 
     *     log(x) = z + z^3 P(z)/Q(z).
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      -1, 8       100000      1.9e-34     4.3e-35
     */
    
     
    /*							log2l.c
     *
     *	Base 2 logarithm, long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, log2l();
     *
     * y = log2l( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the base 2 logarithm of x.
     *
     * The argument is separated into its exponent and fractional
     * parts.  If the exponent is between -1 and +1, the (natural)
     * logarithm of the fraction is approximated by
     *
     *     log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
     *
     * Otherwise, setting  z = 2(x-1)/x+1),
     * 
     *     log(x) = z + z**3 P(z)/Q(z).
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      0.5, 2.0     100,000    1.3e-34     4.5e-35
     *    IEEE     exp(+-10000)  100,000    9.6e-35     4.0e-35
     *
     * In the tests over the interval exp(+-10000), the logarithms
     * of the random arguments were uniformly distributed over
     * [-10000, +10000].
     *
     * ERROR MESSAGES:
     *
     * log singularity:  x = 0; returns MINLOG
     * log domain:       x < 0; returns MINLOG
     */
    
     
    /*							logl.c
     *
     *	Natural logarithm, long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, logl();
     *
     * y = logl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the base e (2.718...) logarithm of x.
     *
     * The argument is separated into its exponent and fractional
     * parts.  If the exponent is between -1 and +1, the logarithm
     * of the fraction is approximated by
     *
     *     log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
     *
     * Otherwise, setting  z = 2(x-1)/x+1),
     * 
     *     log(x) = z + z**3 P(z)/Q(z).
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE   exp(+-MAXLOGL) 36,000      9.5e-35     4.1e-35
     *
     *
     * ERROR MESSAGES:
     *
     * log singularity:  x = 0; returns MINLOGL
     * log domain:       x < 0; returns MINLOGL
     */
    
     
    /*                                                      ndtrll.c
     *
     *      Normal distribution function
     *      128-bit long double version
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, ndtrl();
     *
     * y = ndtrl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the area under the Gaussian probability density
     * function, integrated from minus infinity to x:
     *
     *                            x
     *                             -
     *                   1        | |          2
     *    ndtr(x)  = ---------    |    exp( - t /2 ) dt
     *               sqrt(2pi)  | |
     *                           -
     *                          -inf.
     *
     *             =  ( 1 + erf(z) ) / 2
     *             =  erfc(z) / 2
     *
     * where z = x/sqrt(2). Computation is via the functions
     * erf and erfc with care to avoid error amplification in computing exp(-x^2).
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE     -13,0        50000       7.7e-34     1.7e-34
     *    IEEE     -106.5,-2    50000       6.1e-34     1.9e-34
     *    IEEE       0,3        50000       1.5e-34     3.9e-35
     *
     *
     * ERROR MESSAGES:
     *
     *   message         condition           value returned
     * erfcl underflow    x^2 / 2 > MAXLOGL        0.0
     *
     */
    
     
    /*                                                    ndtrll.c
     *
     *      Error function
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, erfl();
     *
     * y = erfl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * The integral is
     *
     *                           x 
     *                            -
     *                 2         | |          2
     *   erf(x)  =  --------     |    exp( - t  ) dt.
     *              sqrt(pi)   | |
     *                          -
     *                           0
     *
     * The magnitude of x is limited to about 106.56 for IEEE
     * arithmetic; 1 or -1 is returned outside this range.
     *
     * For 0 <= |x| < 1, erf(x) is computed by rational approximations; otherwise
     * erf(x) = 1 - erfc(x).
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      0,1         50000       1.5e-34     4.4e-35
     *
     */
    
     
    /*                                                    ndtrll.c
     *
     *      Complementary error function
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, erfcl();
     *
     * y = erfcl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     *
     *  1 - erf(x) =
     *
     *                           inf. 
     *                             -
     *                  2         | |          2
     *   erfc(x)  =  --------     |    exp( - t  ) dt
     *               sqrt(pi)   | |
     *                           -
     *                            x
     *
     *
     * For small x, erfc(x) = 1 - erf(x); otherwise rational
     * approximations are computed.
     *
     * A special function expx2l.c is used to suppress error amplification
     * in computing exp(-x^2).
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      0,13        100000     5.8e-34      1.5e-34
     *    IEEE      6,106.56    100000     5.9e-34      1.5e-34
     *
     *
     * ERROR MESSAGES:
     *
     *   message          condition              value returned
     * erfcl underflow    x^2 > MAXLOGL              0.0
     *
     *
     */
    
     
    /*							mtherr.c
     *
     *	Library common error handling routine
     *
     *
     *
     * SYNOPSIS:
     *
     * char *fctnam;
     * int code;
     * void mtherr();
     *
     * mtherr( fctnam, code );
     *
     *
     *
     * DESCRIPTION:
     *
     * This routine may be called to report one of the following
     * error conditions (in the include file mconf.h).
     *  
     *   Mnemonic        Value          Significance
     *
     *    DOMAIN            1       argument domain error
     *    SING              2       function singularity
     *    OVERFLOW          3       overflow range error
     *    UNDERFLOW         4       underflow range error
     *    TLOSS             5       total loss of precision
     *    PLOSS             6       partial loss of precision
     *    EDOM             33       Unix domain error code
     *    ERANGE           34       Unix range error code
     *
     * The default version of the file prints the function name,
     * passed to it by the pointer fctnam, followed by the
     * error condition.  The display is directed to the standard
     * output device.  The routine then returns to the calling
     * program.  Users may wish to modify the program to abort by
     * calling exit() under severe error conditions such as domain
     * errors.
     *
     * Since all error conditions pass control to this function,
     * the display may be easily changed, eliminated, or directed
     * to an error logging device.
     *
     * SEE ALSO:
     *
     * mconf.h
     *
     */
    
       
    /*							polevll.c
     *							p1evll.c
     *
     *	Evaluate polynomial
     *
     *
     *
     * SYNOPSIS:
     *
     * int N;
     * long double x, y, coef[N+1], polevl[];
     *
     * y = polevll( x, coef, N );
     *
     *
     *
     * DESCRIPTION:
     *
     * Evaluates polynomial of degree N:
     *
     *                     2          N
     * y  =  C  + C x + C x  +...+ C x
     *        0    1     2          N
     *
     * Coefficients are stored in reverse order:
     *
     * coef[0] = C  , ..., coef[N] = C  .
     *            N                   0
     *
     *  The function p1evll() assumes that coef[N] = 1.0 and is
     * omitted from the array.  Its calling arguments are
     * otherwise the same as polevll().
     *
     *
     * SPEED:
     *
     * In the interest of speed, there are no checks for out
     * of bounds arithmetic.  This routine is used by most of
     * the functions in the library.  Depending on available
     * equipment features, the user may wish to rewrite the
     * program in microcode or assembly language.
     *
     */
    
     
    /*							powil.c
     *
     *	Real raised to integer power, long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, powil();
     * int n;
     *
     * y = powil( x, n );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns argument x raised to the nth power.
     * The routine efficiently decomposes n as a sum of powers of
     * two. The desired power is a product of two-to-the-kth
     * powers of x.  Thus to compute the 32767 power of x requires
     * 28 multiplications instead of 32767 multiplications.
     *
     *
     *
     * ACCURACY:
     *
     *
     *                      Relative error:
     * arithmetic   x domain   n domain  # trials      peak         rms
     *    IEEE     .001,1000  -1022,1023  100,000     7.5e-32     1.4e-32
     *    IEEE     .99,1.01     0,8700    100,000     4.6e-31     9.1e-32
     *
     * Returns MAXNUM on overflow, zero on underflow.
     *
     */
    
     
    /*							powl.c
     *
     *	Power function, long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, z, powl();
     *
     * z = powl( x, y );
     *
     *
     *
     * DESCRIPTION:
     *
     * Computes x raised to the yth power.  For noninteger y,
     *
     *      x^y  =  exp2( y log2(x) ).
     *
     * using the base 2 logarithm and exponential functions.  If y
     * is an integer, |y| < 32768, the function is computed by powil.
     *
     *
     *
     * ACCURACY:
     *
     * The relative error of pow(x,y) can be estimated
     * by   y dl ln(2),   where dl is the absolute error of
     * the internally computed base 2 logarithm.
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *
     *    IEEE     +-1000      100,000     1.0e-30      1.4e-31
     * .001 < x < 1000, with log(x) uniformly distributed.
     * -1000 < y < 1000, y uniformly distributed.
     *
     *    IEEE     0,8700      100,000     1.4e-30      3.1e-31
     * 0.99 < x < 1.01, 0 < y < 8700, uniformly distributed.
     *
     *
     * ERROR MESSAGES:
     *
     *   message         condition      value returned
     * pow overflow     x^y > MAXNUM      MAXNUM
     * pow underflow   x^y < 1/MAXNUM       0.0
     * pow domain      x<0 and y noninteger  0.0
     *
     */
    
     
    /*							sinhl.c
     *
     *	Hyperbolic sine, 128-bit long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, sinhl();
     *
     * y = sinhl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns hyperbolic sine of argument in the range MINLOGL to
     * MAXLOGL.
     *
     * The range is partitioned into two segments.  If |x| <= 1, a
     * rational function of the form x + x**3 P(x)/Q(x) is employed.
     * Otherwise the calculation is sinh(x) = ( exp(x) - exp(-x) )/2.
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE       -2,2      100,000      4.1e-34     7.9e-35
     *
     */
    
     
    /*							sinl.c
     *
     *	Circular sine, long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, sinl();
     *
     * y = sinl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Range reduction is into intervals of pi/4.  The reduction
     * error is nearly eliminated by contriving an extended precision
     * modular arithmetic.
     *
     * Two polynomial approximating functions are employed.
     * Between 0 and pi/4 the sine is approximated by the Cody
     * and Waite polynomial form
     *      x + x^3 P(x^2) .
     * Between pi/4 and pi/2 the cosine is represented as
     *      1 - .5 x^2 + x^4 Q(x^2) .
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain      # trials      peak         rms
     *    IEEE     +-3.6e16      100,000    2.0e-34     5.3e-35
     * 
     * ERROR MESSAGES:
     *
     *   message           condition        value returned
     * sin total loss      x > 2^55              0.0
     *
     */
    
     
    /*							cosl.c
     *
     *	Circular cosine, long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, cosl();
     *
     * y = cosl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Range reduction is into intervals of pi/4.  The reduction
     * error is nearly eliminated by contriving an extended precision
     * modular arithmetic.
     *
     * Two polynomial approximating functions are employed.
     * Between 0 and pi/4 the cosine is approximated by
     *      1 - .5 x^2 + x^4 Q(x^2) .
     * Between pi/4 and pi/2 the sine is represented by the Cody
     * and Waite polynomial form
     *      x  +  x^3 P(x^2) .
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain      # trials      peak         rms
     *    IEEE     +-3.6e16     100,000      2.0e-34     5.2e-35
     *
     * ERROR MESSAGES:
     *
     *   message           condition        value returned
     * cos total loss      x > 2^55              0.0
     */
    
     
    /*							sqrtl.c
     *
     *	Square root, long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, sqrtl();
     *
     * y = sqrtl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the square root of x.
     *
     * Range reduction involves isolating the power of two of the
     * argument and using a polynomial approximation to obtain
     * a rough value for the square root.  Then Heron's iteration
     * is used three times to converge to an accurate value.
     *
     * Note, some arithmetic coprocessors such as the 8087 and
     * 68881 produce correctly rounded square roots, which this
     * routine will not.
     *
     * ACCURACY:
     *
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      0,10        30000       8.1e-20     3.1e-20
     *
     *
     * ERROR MESSAGES:
     *
     *   message         condition      value returned
     * sqrt domain        x < 0            0.0
     *
     */
    
     
    /*							tanhl.c
     *
     *	Hyperbolic tangent, 128-bit long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, tanhl();
     *
     * y = tanhl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns hyperbolic tangent of argument in the range MINLOGL to
     * MAXLOGL.
     *
     * A rational function is used for |x| < 0.625.  The form
     * x + x**3 P(x)/Q(x) of Cody & Waite is employed.
     * Otherwise,
     *    tanh(x) = sinh(x)/cosh(x) = 1  -  2/(exp(2x) + 1).
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE      -2,2       100,000      2.1e-34     4.5e-35
     *
     */
    
     
    /*							tanl.c
     *
     *	Circular tangent, 128-bit long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, tanl();
     *
     * y = tanl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the circular tangent of the radian argument x.
     *
     * Range reduction is modulo pi/4.  A rational function
     *       x + x**3 P(x**2)/Q(x**2)
     * is employed in the basic interval [0, pi/4].
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE     +-3.6e16    100,000      3.0e-34      7.2e-35
     *
     * ERROR MESSAGES:
     *
     *   message         condition          value returned
     * tan total loss   x > 2^55                0.0
     *
     */
    
     
    /*							cotl.c
     *
     *	Circular cotangent, long double precision
     *
     *
     *
     * SYNOPSIS:
     *
     * long double x, y, cotl();
     *
     * y = cotl( x );
     *
     *
     *
     * DESCRIPTION:
     *
     * Returns the circular cotangent of the radian argument x.
     *
     * Range reduction is modulo pi/4.  A rational function
     *       x + x**3 P(x**2)/Q(x**2)
     * is employed in the basic interval [0, pi/4].
     *
     *
     *
     * ACCURACY:
     *
     *                      Relative error:
     * arithmetic   domain     # trials      peak         rms
     *    IEEE     +-3.6e16    100,000      2.9e-34     7.2e-35
     *
     *
     * ERROR MESSAGES:
     *
     *   message         condition          value returned
     * cot total loss   x > 2^55                0.0
     * cot singularity  x = 0                  MAXNUM
     *
     */
    

      To Cephes home page www.moshier.net:

     
    Last update: 27 January 2002