SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
pdsyntrd.f
Go to the documentation of this file.
1 SUBROUTINE pdsyntrd( UPLO, N, A, IA, JA, DESCA, D, E, TAU, WORK,
2 $ LWORK, INFO )
3*
4* -- ScaLAPACK routine (version 1.7) --
5* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
6* and University of California, Berkeley.
7* May 25, 2001
8*
9* .. Scalar Arguments ..
10 CHARACTER UPLO
11 INTEGER IA, INFO, JA, LWORK, N
12* ..
13* .. Array Arguments ..
14 INTEGER DESCA( * )
15 DOUBLE PRECISION A( * ), D( * ), E( * ), TAU( * ), WORK( * )
16* ..
17* Bugs
18* ====
19*
20*
21* Support for UPLO='U' is limited to calling the old, slow, PDSYTRD
22* code.
23*
24*
25* Purpose
26*
27* =======
28*
29* PDSYNTRD is a prototype version of PDSYTRD which uses tailored
30* codes (either the serial, DSYTRD, or the parallel code, PDSYTTRD)
31* when the workspace provided by the user is adequate.
32*
33*
34* PDSYNTRD reduces a real symmetric matrix sub( A ) to symmetric
35* tridiagonal form T by an orthogonal similarity transformation:
36* Q' * sub( A ) * Q = T, where sub( A ) = A(IA:IA+N-1,JA:JA+N-1).
37*
38* Features
39* ========
40*
41* PDSYNTRD is faster than PDSYTRD on almost all matrices,
42* particularly small ones (i.e. N < 500 * sqrt(P) ), provided that
43* enough workspace is available to use the tailored codes.
44*
45* The tailored codes provide performance that is essentially
46* independent of the input data layout.
47*
48* The tailored codes place no restrictions on IA, JA, MB or NB.
49* At present, IA, JA, MB and NB are restricted to those values allowed
50* by PDSYTRD to keep the interface simple. These restrictions are
51* documented below. (Search for "restrictions".)
52*
53* Notes
54* =====
55*
56*
57* Each global data object is described by an associated description
58* vector. This vector stores the information required to establish
59* the mapping between an object element and its corresponding process
60* and memory location.
61*
62* Let A be a generic term for any 2D block cyclicly distributed array.
63* Such a global array has an associated description vector DESCA.
64* In the following comments, the character _ should be read as
65* "of the global array".
66*
67* NOTATION STORED IN EXPLANATION
68* --------------- -------------- --------------------------------------
69* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
70* DTYPE_A = 1.
71* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
72* the BLACS process grid A is distribu-
73* ted over. The context itself is glo-
74* bal, but the handle (the integer
75* value) may vary.
76* M_A (global) DESCA( M_ ) The number of rows in the global
77* array A.
78* N_A (global) DESCA( N_ ) The number of columns in the global
79* array A.
80* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
81* the rows of the array.
82* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
83* the columns of the array.
84* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
85* row of the array A is distributed.
86* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
87* first column of the array A is
88* distributed.
89* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
90* array. LLD_A >= MAX(1,LOCr(M_A)).
91*
92* Let K be the number of rows or columns of a distributed matrix,
93* and assume that its process grid has dimension p x q.
94* LOCr( K ) denotes the number of elements of K that a process
95* would receive if K were distributed over the p processes of its
96* process column.
97* Similarly, LOCc( K ) denotes the number of elements of K that a
98* process would receive if K were distributed over the q processes of
99* its process row.
100* The values of LOCr() and LOCc() may be determined via a call to the
101* ScaLAPACK tool function, NUMROC:
102* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
103* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
104* An upper bound for these quantities may be computed by:
105* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
106* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
107*
108*
109* Arguments
110* =========
111*
112* UPLO (global input) CHARACTER
113* Specifies whether the upper or lower triangular part of the
114* symmetric matrix sub( A ) is stored:
115* = 'U': Upper triangular
116* = 'L': Lower triangular
117*
118* N (global input) INTEGER
119* The number of rows and columns to be operated on, i.e. the
120* order of the distributed submatrix sub( A ). N >= 0.
121*
122* A (local input/local output) DOUBLE PRECISION pointer into the
123* local memory to an array of dimension (LLD_A,LOCc(JA+N-1)).
124* On entry, this array contains the local pieces of the
125* symmetric distributed matrix sub( A ). If UPLO = 'U', the
126* leading N-by-N upper triangular part of sub( A ) contains
127* the upper triangular part of the matrix, and its strictly
128* lower triangular part is not referenced. If UPLO = 'L', the
129* leading N-by-N lower triangular part of sub( A ) contains the
130* lower triangular part of the matrix, and its strictly upper
131* triangular part is not referenced. On exit, if UPLO = 'U',
132* the diagonal and first superdiagonal of sub( A ) are over-
133* written by the corresponding elements of the tridiagonal
134* matrix T, and the elements above the first superdiagonal,
135* with the array TAU, represent the orthogonal matrix Q as a
136* product of elementary reflectors; if UPLO = 'L', the diagonal
137* and first subdiagonal of sub( A ) are overwritten by the
138* corresponding elements of the tridiagonal matrix T, and the
139* elements below the first subdiagonal, with the array TAU,
140* represent the orthogonal matrix Q as a product of elementary
141* reflectors. See Further Details.
142*
143* IA (global input) INTEGER
144* The row index in the global array A indicating the first
145* row of sub( A ).
146*
147* JA (global input) INTEGER
148* The column index in the global array A indicating the
149* first column of sub( A ).
150*
151* DESCA (global and local input) INTEGER array of dimension DLEN_.
152* The array descriptor for the distributed matrix A.
153*
154* D (local output) DOUBLE PRECISION array, dimension LOCc(JA+N-1)
155* The diagonal elements of the tridiagonal matrix T:
156* D(i) = A(i,i). D is tied to the distributed matrix A.
157*
158* E (local output) DOUBLE PRECISION array, dimension LOCc(JA+N-1)
159* if UPLO = 'U', LOCc(JA+N-2) otherwise. The off-diagonal
160* elements of the tridiagonal matrix T: E(i) = A(i,i+1) if
161* UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. E is tied to the
162* distributed matrix A.
163*
164* TAU (local output) DOUBLE PRECISION array, dimension
165* LOCc(JA+N-1). This array contains the scalar factors TAU of
166* the elementary reflectors. TAU is tied to the distributed
167* matrix A.
168*
169* WORK (local workspace/local output) DOUBLE PRECISION array,
170* dimension (LWORK)
171* On exit, WORK( 1 ) returns the optimal LWORK.
172*
173* LWORK (local or global input) INTEGER
174* The dimension of the array WORK.
175* LWORK is local input and must be at least
176* LWORK >= MAX( NB * ( NP +1 ), 3 * NB )
177*
178* For optimal performance, greater workspace is needed, i.e.
179* LWORK >= 2*( ANB+1 )*( 4*NPS+2 ) + ( NPS + 4 ) * NPS
180* ICTXT = DESCA( CTXT_ )
181* ANB = PJLAENV( ICTXT, 3, 'PDSYTTRD', 'L', 0, 0, 0, 0 )
182* SQNPC = INT( SQRT( DBLE( NPROW * NPCOL ) ) )
183* NPS = MAX( NUMROC( N, 1, 0, 0, SQNPC ), 2*ANB )
184*
185* NUMROC is a ScaLAPACK tool functions;
186* PJLAENV is a ScaLAPACK envionmental inquiry function
187* MYROW, MYCOL, NPROW and NPCOL can be determined by calling
188* the subroutine BLACS_GRIDINFO.
189*
190*
191* INFO (global output) INTEGER
192* = 0: successful exit
193* < 0: If the i-th argument is an array and the j-entry had
194* an illegal value, then INFO = -(i*100+j), if the i-th
195* argument is a scalar and had an illegal value, then
196* INFO = -i.
197*
198* Further Details
199* ===============
200*
201* If UPLO = 'U', the matrix Q is represented as a product of elementary
202* reflectors
203*
204* Q = H(n-1) . . . H(2) H(1).
205*
206* Each H(i) has the form
207*
208* H(i) = I - tau * v * v'
209*
210* where tau is a real scalar, and v is a real vector with
211* v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
212* A(ia:ia+i-2,ja+i), and tau in TAU(ja+i-1).
213*
214* If UPLO = 'L', the matrix Q is represented as a product of elementary
215* reflectors
216*
217* Q = H(1) H(2) . . . H(n-1).
218*
219* Each H(i) has the form
220*
221* H(i) = I - tau * v * v'
222*
223* where tau is a real scalar, and v is a real vector with
224* v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in
225* A(ia+i+1:ia+n-1,ja+i-1), and tau in TAU(ja+i-1).
226*
227* The contents of sub( A ) on exit are illustrated by the following
228* examples with n = 5:
229*
230* if UPLO = 'U': if UPLO = 'L':
231*
232* ( d e v2 v3 v4 ) ( d )
233* ( d e v3 v4 ) ( e d )
234* ( d e v4 ) ( v1 e d )
235* ( d e ) ( v1 v2 e d )
236* ( d ) ( v1 v2 v3 e d )
237*
238* where d and e denote diagonal and off-diagonal elements of T, and vi
239* denotes an element of the vector defining H(i).
240*
241* Alignment requirements
242* ======================
243*
244* The distributed submatrix sub( A ) must verify some alignment proper-
245* ties, namely the following expression should be true:
246* ( MB_A.EQ.NB_A .AND. IROFFA.EQ.ICOFFA .AND. IROFFA.EQ.0 ) with
247* IROFFA = MOD( IA-1, MB_A ) and ICOFFA = MOD( JA-1, NB_A ).
248*
249* =====================================================================
250*
251* .. Parameters ..
252 INTEGER BLOCK_CYCLIC_2D, DLEN_, DTYPE_, CTXT_, M_, N_,
253 $ mb_, nb_, rsrc_, csrc_, lld_
254 parameter( block_cyclic_2d = 1, dlen_ = 9, dtype_ = 1,
255 $ ctxt_ = 2, m_ = 3, n_ = 4, mb_ = 5, nb_ = 6,
256 $ rsrc_ = 7, csrc_ = 8, lld_ = 9 )
257 DOUBLE PRECISION ONE
258 parameter( one = 1.0d+0 )
259* ..
260* .. Local Scalars ..
261 LOGICAL LQUERY, UPPER
262 CHARACTER COLCTOP, ROWCTOP
263 INTEGER ANB, CTXTB, I, IACOL, IAROW, ICOFFA, ICTXT,
264 $ iinfo, indb, indd, inde, indtau, indw, ipw,
265 $ iroffa, j, jb, jx, k, kk, llwork, lwmin, minsz,
266 $ mycol, mycolb, myrow, myrowb, nb, np, npcol,
267 $ npcolb, nprow, nprowb, nps, nq, onepmin, sqnpc,
268 $ ttlwmin
269* ..
270* .. Local Arrays ..
271 INTEGER DESCB( DLEN_ ), DESCW( DLEN_ ), IDUM1( 2 ),
272 $ idum2( 2 )
273* ..
274* .. External Subroutines ..
275 EXTERNAL blacs_get, blacs_gridexit, blacs_gridinfo,
276 $ blacs_gridinit, chk1mat, descset, dsytrd,
277 $ igamn2d, pchk1mat, pdelset, pdlamr1d, pdlatrd,
278 $ pdsyr2k, pdsytd2, pdsyttrd, pdtrmr2d,
279 $ pb_topget, pb_topset, pxerbla
280* ..
281* .. External Functions ..
282 LOGICAL LSAME
283 INTEGER INDXG2L, INDXG2P, NUMROC, PJLAENV
284 EXTERNAL lsame, indxg2l, indxg2p, numroc, pjlaenv
285* ..
286* .. Intrinsic Functions ..
287 INTRINSIC dble, ichar, int, max, min, mod, sqrt
288* ..
289* .. Executable Statements ..
290*
291* This is just to keep ftnchek and toolpack/1 happy
292 IF( block_cyclic_2d*csrc_*ctxt_*dlen_*dtype_*lld_*mb_*m_*nb_*n_*
293 $ rsrc_.LT.0 )RETURN
294* Get grid parameters
295*
296 ictxt = desca( ctxt_ )
297 CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
298*
299* Test the input parameters
300*
301 info = 0
302 IF( nprow.EQ.-1 ) THEN
303 info = -( 600+ctxt_ )
304 ELSE
305 CALL chk1mat( n, 2, n, 2, ia, ja, desca, 6, info )
306 upper = lsame( uplo, 'U' )
307 IF( info.EQ.0 ) THEN
308 nb = desca( nb_ )
309 iroffa = mod( ia-1, desca( mb_ ) )
310 icoffa = mod( ja-1, desca( nb_ ) )
311 iarow = indxg2p( ia, nb, myrow, desca( rsrc_ ), nprow )
312 iacol = indxg2p( ja, nb, mycol, desca( csrc_ ), npcol )
313 np = numroc( n, nb, myrow, iarow, nprow )
314 nq = max( 1, numroc( n+ja-1, nb, mycol, desca( csrc_ ),
315 $ npcol ) )
316 lwmin = max( ( np+1 )*nb, 3*nb )
317 anb = pjlaenv( ictxt, 3, 'PDSYTTRD', 'L', 0, 0, 0, 0 )
318 minsz = pjlaenv( ictxt, 5, 'PDSYTTRD', 'L', 0, 0, 0, 0 )
319 sqnpc = int( sqrt( dble( nprow*npcol ) ) )
320 nps = max( numroc( n, 1, 0, 0, sqnpc ), 2*anb )
321 ttlwmin = 2*( anb+1 )*( 4*nps+2 ) + ( nps+4 )*nps
322*
323 work( 1 ) = dble( ttlwmin )
324 lquery = ( lwork.EQ.-1 )
325 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
326 info = -1
327*
328* The following two restrictions are not necessary provided
329* that either of the tailored codes are used.
330*
331 ELSE IF( iroffa.NE.icoffa .OR. icoffa.NE.0 ) THEN
332 info = -5
333 ELSE IF( desca( mb_ ).NE.desca( nb_ ) ) THEN
334 info = -( 600+nb_ )
335 ELSE IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
336 info = -11
337 END IF
338 END IF
339 IF( upper ) THEN
340 idum1( 1 ) = ichar( 'U' )
341 ELSE
342 idum1( 1 ) = ichar( 'L' )
343 END IF
344 idum2( 1 ) = 1
345 IF( lwork.EQ.-1 ) THEN
346 idum1( 2 ) = -1
347 ELSE
348 idum1( 2 ) = 1
349 END IF
350 idum2( 2 ) = 11
351 CALL pchk1mat( n, 2, n, 2, ia, ja, desca, 6, 2, idum1, idum2,
352 $ info )
353 END IF
354*
355 IF( info.NE.0 ) THEN
356 CALL pxerbla( ictxt, 'PDSYNTRD', -info )
357 RETURN
358 ELSE IF( lquery ) THEN
359 RETURN
360 END IF
361*
362* Quick return if possible
363*
364 IF( n.EQ.0 )
365 $ RETURN
366*
367*
368 onepmin = n*n + 3*n + 1
369 llwork = lwork
370 CALL igamn2d( ictxt, 'A', ' ', 1, 1, llwork, 1, 1, -1, -1, -1,
371 $ -1 )
372*
373*
374*
375* Use the serial, LAPACK, code: DTRD on small matrices if we
376* we have enough space.
377*
378 nprowb = 0
379 IF( ( n.LT.minsz .OR. sqnpc.EQ.1 ) .AND. llwork.GE.onepmin .AND.
380 $ .NOT.upper ) THEN
381 nprowb = 1
382 nps = n
383 ELSE
384 IF( llwork.GE.ttlwmin .AND. .NOT.upper ) THEN
385 nprowb = sqnpc
386 END IF
387 END IF
388*
389 IF( nprowb.GE.1 ) THEN
390 npcolb = nprowb
391 sqnpc = nprowb
392 indb = 1
393 indd = indb + nps*nps
394 inde = indd + nps
395 indtau = inde + nps
396 indw = indtau + nps
397 llwork = llwork - indw + 1
398*
399 CALL blacs_get( ictxt, 10, ctxtb )
400 CALL blacs_gridinit( ctxtb, 'Row major', sqnpc, sqnpc )
401 CALL blacs_gridinfo( ctxtb, nprowb, npcolb, myrowb, mycolb )
402 CALL descset( descb, n, n, 1, 1, 0, 0, ctxtb, nps )
403*
404 CALL pdtrmr2d( uplo, 'N', n, n, a, ia, ja, desca, work( indb ),
405 $ 1, 1, descb, ictxt )
406*
407*
408* Only those processors in context CTXTB are needed for a while
409*
410 IF( nprowb.GT.0 ) THEN
411*
412 IF( nprowb.EQ.1 ) THEN
413 CALL dsytrd( uplo, n, work( indb ), nps, work( indd ),
414 $ work( inde ), work( indtau ), work( indw ),
415 $ llwork, info )
416 ELSE
417*
418 CALL pdsyttrd( 'L', n, work( indb ), 1, 1, descb,
419 $ work( indd ), work( inde ),
420 $ work( indtau ), work( indw ), llwork,
421 $ info )
422*
423 END IF
424 END IF
425*
426* All processors participate in moving the data back to the
427* way that PDSYNTRD expects it.
428*
429 CALL pdlamr1d( n-1, work( inde ), 1, 1, descb, e, 1, ja,
430 $ desca )
431*
432 CALL pdlamr1d( n, work( indd ), 1, 1, descb, d, 1, ja, desca )
433*
434 CALL pdlamr1d( n, work( indtau ), 1, 1, descb, tau, 1, ja,
435 $ desca )
436*
437 CALL pdtrmr2d( uplo, 'N', n, n, work( indb ), 1, 1, descb, a,
438 $ ia, ja, desca, ictxt )
439*
440 IF( myrowb.GE.0 )
441 $ CALL blacs_gridexit( ctxtb )
442*
443 ELSE
444*
445 CALL pb_topget( ictxt, 'Combine', 'Columnwise', colctop )
446 CALL pb_topget( ictxt, 'Combine', 'Rowwise', rowctop )
447 CALL pb_topset( ictxt, 'Combine', 'Columnwise', '1-tree' )
448 CALL pb_topset( ictxt, 'Combine', 'Rowwise', '1-tree' )
449*
450 ipw = np*nb + 1
451*
452 IF( upper ) THEN
453*
454* Reduce the upper triangle of sub( A ).
455*
456 kk = mod( ja+n-1, nb )
457 IF( kk.EQ.0 )
458 $ kk = nb
459 CALL descset( descw, n, nb, nb, nb, iarow,
460 $ indxg2p( ja+n-kk, nb, mycol, desca( csrc_ ),
461 $ npcol ), ictxt, max( 1, np ) )
462*
463 DO 10 k = n - kk + 1, nb + 1, -nb
464 jb = min( n-k+1, nb )
465 i = ia + k - 1
466 j = ja + k - 1
467*
468* Reduce columns I:I+NB-1 to tridiagonal form and form
469* the matrix W which is needed to update the unreduced part of
470* the matrix
471*
472 CALL pdlatrd( uplo, k+jb-1, jb, a, ia, ja, desca, d, e,
473 $ tau, work, 1, 1, descw, work( ipw ) )
474*
475* Update the unreduced submatrix A(IA:I-1,JA:J-1), using an
476* update of the form:
477* A(IA:I-1,JA:J-1) := A(IA:I-1,JA:J-1) - V*W' - W*V'
478*
479 CALL pdsyr2k( uplo, 'No transpose', k-1, jb, -one, a, ia,
480 $ j, desca, work, 1, 1, descw, one, a, ia,
481 $ ja, desca )
482*
483* Copy last superdiagonal element back into sub( A )
484*
485 jx = min( indxg2l( j, nb, 0, iacol, npcol ), nq )
486 CALL pdelset( a, i-1, j, desca, e( jx ) )
487*
488 descw( csrc_ ) = mod( descw( csrc_ )+npcol-1, npcol )
489*
490 10 CONTINUE
491*
492* Use unblocked code to reduce the last or only block
493*
494 CALL pdsytd2( uplo, min( n, nb ), a, ia, ja, desca, d, e,
495 $ tau, work, lwork, iinfo )
496*
497 ELSE
498*
499* Reduce the lower triangle of sub( A )
500*
501 kk = mod( ja+n-1, nb )
502 IF( kk.EQ.0 )
503 $ kk = nb
504 CALL descset( descw, n, nb, nb, nb, iarow, iacol, ictxt,
505 $ max( 1, np ) )
506*
507 DO 20 k = 1, n - nb, nb
508 i = ia + k - 1
509 j = ja + k - 1
510*
511* Reduce columns I:I+NB-1 to tridiagonal form and form
512* the matrix W which is needed to update the unreduced part
513* of the matrix
514*
515 CALL pdlatrd( uplo, n-k+1, nb, a, i, j, desca, d, e, tau,
516 $ work, k, 1, descw, work( ipw ) )
517*
518* Update the unreduced submatrix A(I+NB:IA+N-1,I+NB:IA+N-1),
519* using an update of the form: A(I+NB:IA+N-1,I+NB:IA+N-1) :=
520* A(I+NB:IA+N-1,I+NB:IA+N-1) - V*W' - W*V'
521*
522 CALL pdsyr2k( uplo, 'No transpose', n-k-nb+1, nb, -one,
523 $ a, i+nb, j, desca, work, k+nb, 1, descw,
524 $ one, a, i+nb, j+nb, desca )
525*
526* Copy last subdiagonal element back into sub( A )
527*
528 jx = min( indxg2l( j+nb-1, nb, 0, iacol, npcol ), nq )
529 CALL pdelset( a, i+nb, j+nb-1, desca, e( jx ) )
530*
531 descw( csrc_ ) = mod( descw( csrc_ )+1, npcol )
532*
533 20 CONTINUE
534*
535* Use unblocked code to reduce the last or only block
536*
537 CALL pdsytd2( uplo, kk, a, ia+k-1, ja+k-1, desca, d, e, tau,
538 $ work, lwork, iinfo )
539 END IF
540*
541 CALL pb_topset( ictxt, 'Combine', 'Columnwise', colctop )
542 CALL pb_topset( ictxt, 'Combine', 'Rowwise', rowctop )
543*
544 END IF
545*
546 work( 1 ) = dble( ttlwmin )
547*
548 RETURN
549*
550* End of PDSYNTRD
551*
552 END
subroutine chk1mat(ma, mapos0, na, napos0, ia, ja, desca, descapos0, info)
Definition chk1mat.f:3
subroutine descset(desc, m, n, mb, nb, irsrc, icsrc, ictxt, lld)
Definition descset.f:3
#define max(A, B)
Definition pcgemr.c:180
#define min(A, B)
Definition pcgemr.c:181
subroutine pchk1mat(ma, mapos0, na, napos0, ia, ja, desca, descapos0, nextra, ex, expos, info)
Definition pchkxmat.f:3
subroutine pdelset(a, ia, ja, desca, alpha)
Definition pdelset.f:2
subroutine pdlamr1d(n, a, ia, ja, desca, b, ib, jb, descb)
Definition pdlamr1d.f:2
subroutine pdlatrd(uplo, n, nb, a, ia, ja, desca, d, e, tau, w, iw, jw, descw, work)
Definition pdlatrd.f:3
subroutine pdsyntrd(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)
Definition pdsyntrd.f:3
subroutine pdsytd2(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)
Definition pdsytd2.f:3
subroutine pdsyttrd(uplo, n, a, ia, ja, desca, d, e, tau, work, lwork, info)
Definition pdsyttrd.f:3
subroutine pxerbla(ictxt, srname, info)
Definition pxerbla.f:2