ScaLAPACK 2.1  2.1 ScaLAPACK: Scalable Linear Algebra PACKage
pzpttrf.f
Go to the documentation of this file.
1  SUBROUTINE pzpttrf( N, D, E, JA, DESCA, AF, LAF, WORK, LWORK,
2  \$ INFO )
3 *
4 * -- ScaLAPACK routine (version 2.0.2) --
5 * Univ. of Tennessee, Univ. of California Berkeley, Univ. of Colorado Denver
6 * May 1 2012
7 *
8 * .. Scalar Arguments ..
9  INTEGER INFO, JA, LAF, LWORK, N
10 * ..
11 * .. Array Arguments ..
12  INTEGER DESCA( * )
13  COMPLEX*16 AF( * ), E( * ), WORK( * )
14  DOUBLE PRECISION D( * )
15 * ..
16 *
17 *
18 * Purpose
19 * =======
20 *
21 * PZPTTRF computes a Cholesky factorization
22 * of an N-by-N complex tridiagonal
23 * symmetric positive definite distributed matrix
24 * A(1:N, JA:JA+N-1).
25 * Reordering is used to increase parallelism in the factorization.
26 * This reordering results in factors that are DIFFERENT from those
27 * produced by equivalent sequential codes. These factors cannot
28 * be used directly by users; however, they can be used in
29 * subsequent calls to PZPTTRS to solve linear systems.
30 *
31 * The factorization has the form
32 *
33 * P A(1:N, JA:JA+N-1) P^T = U' D U or
34 *
35 * P A(1:N, JA:JA+N-1) P^T = L D L',
36 *
37 * where U is a tridiagonal upper triangular matrix and L is tridiagonal
38 * lower triangular, and P is a permutation matrix.
39 *
40 * =====================================================================
41 *
42 * Arguments
43 * =========
44 *
45 *
46 * N (global input) INTEGER
47 * The number of rows and columns to be operated on, i.e. the
48 * order of the distributed submatrix A(1:N, JA:JA+N-1). N >= 0.
49 *
50 * D (local input/local output) COMPLEX*16 pointer to local
51 * part of global vector storing the main diagonal of the
52 * matrix.
53 * On exit, this array contains information containing the
54 * factors of the matrix.
55 * Must be of size >= DESCA( NB_ ).
56 *
57 * E (local input/local output) COMPLEX*16 pointer to local
58 * part of global vector storing the upper diagonal of the
59 * matrix. Globally, DU(n) is not referenced, and DU must be
60 * aligned with D.
61 * On exit, this array contains information containing the
62 * factors of the matrix.
63 * Must be of size >= DESCA( NB_ ).
64 *
65 * JA (global input) INTEGER
66 * The index in the global array A that points to the start of
67 * the matrix to be operated on (which may be either all of A
68 * or a submatrix of A).
69 *
70 * DESCA (global and local input) INTEGER array of dimension DLEN.
71 * if 1D type (DTYPE_A=501 or 502), DLEN >= 7;
72 * if 2D type (DTYPE_A=1), DLEN >= 9.
73 * The array descriptor for the distributed matrix A.
74 * Contains information of mapping of A to memory. Please
75 * see NOTES below for full description and options.
76 *
77 * AF (local output) COMPLEX*16 array, dimension LAF.
78 * Auxiliary Fillin Space.
79 * Fillin is created during the factorization routine
80 * PZPTTRF and this is stored in AF. If a linear system
81 * is to be solved using PZPTTRS after the factorization
82 * routine, AF *must not be altered* after the factorization.
83 *
84 * LAF (local input) INTEGER
85 * Size of user-input Auxiliary Fillin space AF. Must be >=
86 * (NB+2)
87 * If LAF is not large enough, an error code will be returned
88 * and the minimum acceptable size will be returned in AF( 1 )
89 *
90 * WORK (local workspace/local output)
91 * COMPLEX*16 temporary workspace. This space may
92 * be overwritten in between calls to routines. WORK must be
93 * the size given in LWORK.
94 * On exit, WORK( 1 ) contains the minimal LWORK.
95 *
96 * LWORK (local input or global input) INTEGER
97 * Size of user-input workspace WORK.
98 * If LWORK is too small, the minimal acceptable size will be
99 * returned in WORK(1) and an error code is returned. LWORK>=
100 * 8*NPCOL
101 *
102 * INFO (local output) INTEGER
103 * = 0: successful exit
104 * < 0: If the i-th argument is an array and the j-entry had
105 * an illegal value, then INFO = -(i*100+j), if the i-th
106 * argument is a scalar and had an illegal value, then
107 * INFO = -i.
108 * > 0: If INFO = K<=NPROCS, the submatrix stored on processor
109 * INFO and factored locally was not
110 * positive definite, and
111 * the factorization was not completed.
112 * If INFO = K>NPROCS, the submatrix stored on processor
113 * INFO-NPROCS representing interactions with other
114 * processors was not
115 * positive definite,
116 * and the factorization was not completed.
117 *
118 * =====================================================================
119 *
120 *
121 * Restrictions
122 * ============
123 *
124 * The following are restrictions on the input parameters. Some of these
125 * are temporary and will be removed in future releases, while others
126 * may reflect fundamental technical limitations.
127 *
128 * Non-cyclic restriction: VERY IMPORTANT!
129 * P*NB>= mod(JA-1,NB)+N.
130 * The mapping for matrices must be blocked, reflecting the nature
131 * of the divide and conquer algorithm as a task-parallel algorithm.
132 * This formula in words is: no processor may have more than one
133 * chunk of the matrix.
134 *
135 * Blocksize cannot be too small:
136 * If the matrix spans more than one processor, the following
137 * restriction on NB, the size of each block on each processor,
138 * must hold:
139 * NB >= 2
140 * The bulk of parallel computation is done on the matrix of size
141 * O(NB) on each processor. If this is too small, divide and conquer
142 * is a poor choice of algorithm.
143 *
144 * Submatrix reference:
145 * JA = IB
146 * Alignment restriction that prevents unnecessary communication.
147 *
148 *
149 * =====================================================================
150 *
151 *
152 * Notes
153 * =====
154 *
155 * If the factorization routine and the solve routine are to be called
156 * separately (to solve various sets of righthand sides using the same
157 * coefficient matrix), the auxiliary space AF *must not be altered*
158 * between calls to the factorization routine and the solve routine.
159 *
160 * The best algorithm for solving banded and tridiagonal linear systems
161 * depends on a variety of parameters, especially the bandwidth.
162 * Currently, only algorithms designed for the case N/P >> bw are
163 * implemented. These go by many names, including Divide and Conquer,
164 * Partitioning, domain decomposition-type, etc.
165 * For tridiagonal matrices, it is obvious: N/P >> bw(=1), and so D&C
166 * algorithms are the appropriate choice.
167 *
168 * Algorithm description: Divide and Conquer
169 *
170 * The Divide and Conqer algorithm assumes the matrix is narrowly
171 * banded compared with the number of equations. In this situation,
172 * it is best to distribute the input matrix A one-dimensionally,
173 * with columns atomic and rows divided amongst the processes.
174 * The basic algorithm divides the tridiagonal matrix up into
175 * P pieces with one stored on each processor,
176 * and then proceeds in 2 phases for the factorization or 3 for the
177 * solution of a linear system.
178 * 1) Local Phase:
179 * The individual pieces are factored independently and in
180 * parallel. These factors are applied to the matrix creating
181 * fillin, which is stored in a non-inspectable way in auxiliary
182 * space AF. Mathematically, this is equivalent to reordering
183 * the matrix A as P A P^T and then factoring the principal
184 * leading submatrix of size equal to the sum of the sizes of
185 * the matrices factored on each processor. The factors of
186 * these submatrices overwrite the corresponding parts of A
187 * in memory.
188 * 2) Reduced System Phase:
189 * A small ((P-1)) system is formed representing
190 * interaction of the larger blocks, and is stored (as are its
191 * factors) in the space AF. A parallel Block Cyclic Reduction
192 * algorithm is used. For a linear system, a parallel front solve
193 * followed by an analagous backsolve, both using the structure
194 * of the factored matrix, are performed.
195 * 3) Backsubsitution Phase:
196 * For a linear system, a local backsubstitution is performed on
197 * each processor in parallel.
198 *
199 *
200 * Descriptors
201 * ===========
202 *
203 * Descriptors now have *types* and differ from ScaLAPACK 1.0.
204 *
205 * Note: tridiagonal codes can use either the old two dimensional
206 * or new one-dimensional descriptors, though the processor grid in
207 * both cases *must be one-dimensional*. We describe both types below.
208 *
209 * Each global data object is described by an associated description
210 * vector. This vector stores the information required to establish
211 * the mapping between an object element and its corresponding process
212 * and memory location.
213 *
214 * Let A be a generic term for any 2D block cyclicly distributed array.
215 * Such a global array has an associated description vector DESCA.
216 * In the following comments, the character _ should be read as
217 * "of the global array".
218 *
219 * NOTATION STORED IN EXPLANATION
220 * --------------- -------------- --------------------------------------
221 * DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
222 * DTYPE_A = 1.
223 * CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
224 * the BLACS process grid A is distribu-
225 * ted over. The context itself is glo-
226 * bal, but the handle (the integer
227 * value) may vary.
228 * M_A (global) DESCA( M_ ) The number of rows in the global
229 * array A.
230 * N_A (global) DESCA( N_ ) The number of columns in the global
231 * array A.
232 * MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
233 * the rows of the array.
234 * NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
235 * the columns of the array.
236 * RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
237 * row of the array A is distributed.
238 * CSRC_A (global) DESCA( CSRC_ ) The process column over which the
239 * first column of the array A is
240 * distributed.
241 * LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
242 * array. LLD_A >= MAX(1,LOCr(M_A)).
243 *
244 * Let K be the number of rows or columns of a distributed matrix,
245 * and assume that its process grid has dimension p x q.
246 * LOCr( K ) denotes the number of elements of K that a process
247 * would receive if K were distributed over the p processes of its
248 * process column.
249 * Similarly, LOCc( K ) denotes the number of elements of K that a
250 * process would receive if K were distributed over the q processes of
251 * its process row.
252 * The values of LOCr() and LOCc() may be determined via a call to the
253 * ScaLAPACK tool function, NUMROC:
254 * LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
255 * LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
256 * An upper bound for these quantities may be computed by:
257 * LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
258 * LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
259 *
260 *
261 * One-dimensional descriptors:
262 *
263 * One-dimensional descriptors are a new addition to ScaLAPACK since
264 * version 1.0. They simplify and shorten the descriptor for 1D
265 * arrays.
266 *
267 * Since ScaLAPACK supports two-dimensional arrays as the fundamental
268 * object, we allow 1D arrays to be distributed either over the
269 * first dimension of the array (as if the grid were P-by-1) or the
270 * 2nd dimension (as if the grid were 1-by-P). This choice is
271 * indicated by the descriptor type (501 or 502)
272 * as described below.
273 * However, for tridiagonal matrices, since the objects being
274 * distributed are the individual vectors storing the diagonals, we
275 * have adopted the convention that both the P-by-1 descriptor and
276 * the 1-by-P descriptor are allowed and are equivalent for
277 * tridiagonal matrices. Thus, for tridiagonal matrices,
278 * DTYPE_A = 501 or 502 can be used interchangeably
279 * without any other change.
280 * We require that the distributed vectors storing the diagonals of a
281 * tridiagonal matrix be aligned with each other. Because of this, a
282 * single descriptor, DESCA, serves to describe the distribution of
283 * of all diagonals simultaneously.
284 *
285 * IMPORTANT NOTE: the actual BLACS grid represented by the
286 * CTXT entry in the descriptor may be *either* P-by-1 or 1-by-P
287 * irrespective of which one-dimensional descriptor type
288 * (501 or 502) is input.
289 * This routine will interpret the grid properly either way.
290 * ScaLAPACK routines *do not support intercontext operations* so that
291 * the grid passed to a single ScaLAPACK routine *must be the same*
292 * for all array descriptors passed to that routine.
293 *
294 * NOTE: In all cases where 1D descriptors are used, 2D descriptors
295 * may also be used, since a one-dimensional array is a special case
296 * of a two-dimensional array with one dimension of size unity.
297 * The two-dimensional array used in this case *must* be of the
298 * proper orientation:
299 * If the appropriate one-dimensional descriptor is DTYPEA=501
300 * (1 by P type), then the two dimensional descriptor must
301 * have a CTXT value that refers to a 1 by P BLACS grid;
302 * If the appropriate one-dimensional descriptor is DTYPEA=502
303 * (P by 1 type), then the two dimensional descriptor must
304 * have a CTXT value that refers to a P by 1 BLACS grid.
305 *
306 *
307 * Summary of allowed descriptors, types, and BLACS grids:
308 * DTYPE 501 502 1 1
309 * BLACS grid 1xP or Px1 1xP or Px1 1xP Px1
310 * -----------------------------------------------------
311 * A OK OK OK NO
312 * B NO OK NO OK
313 *
314 * Let A be a generic term for any 1D block cyclicly distributed array.
315 * Such a global array has an associated description vector DESCA.
316 * In the following comments, the character _ should be read as
317 * "of the global array".
318 *
319 * NOTATION STORED IN EXPLANATION
320 * --------------- ---------- ------------------------------------------
321 * DTYPE_A(global) DESCA( 1 ) The descriptor type. For 1D grids,
322 * TYPE_A = 501: 1-by-P grid.
323 * TYPE_A = 502: P-by-1 grid.
324 * CTXT_A (global) DESCA( 2 ) The BLACS context handle, indicating
325 * the BLACS process grid A is distribu-
326 * ted over. The context itself is glo-
327 * bal, but the handle (the integer
328 * value) may vary.
329 * N_A (global) DESCA( 3 ) The size of the array dimension being
330 * distributed.
331 * NB_A (global) DESCA( 4 ) The blocking factor used to distribute
332 * the distributed dimension of the array.
333 * SRC_A (global) DESCA( 5 ) The process row or column over which the
334 * first row or column of the array
335 * is distributed.
336 * Ignored DESCA( 6 ) Ignored for tridiagonal matrices.
337 * Reserved DESCA( 7 ) Reserved for future use.
338 *
339 *
340 *
341 * =====================================================================
342 *
343 * Code Developer: Andrew J. Cleary, University of Tennessee.
344 * Current address: Lawrence Livermore National Labs.
345 * This version released: August, 2001.
346 *
347 * =====================================================================
348 *
349 * ..
350 * .. Parameters ..
351  DOUBLE PRECISION ONE, ZERO
352  parameter( one = 1.0d+0 )
353  parameter( zero = 0.0d+0 )
354  COMPLEX*16 CONE, CZERO
355  parameter( cone = ( 1.0d+0, 0.0d+0 ) )
356  parameter( czero = ( 0.0d+0, 0.0d+0 ) )
357  INTEGER INT_ONE
358  parameter( int_one = 1 )
359  INTEGER DESCMULT, BIGNUM
360  parameter(descmult = 100, bignum = descmult * descmult)
361  INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
362  \$ lld_, mb_, m_, nb_, n_, rsrc_
363  parameter( block_cyclic_2d = 1, dlen_ = 9, dtype_ = 1,
364  \$ ctxt_ = 2, m_ = 3, n_ = 4, mb_ = 5, nb_ = 6,
365  \$ rsrc_ = 7, csrc_ = 8, lld_ = 9 )
366 * ..
367 * .. Local Scalars ..
368  INTEGER COMM_PROC, CSRC, FIRST_PROC, I, ICTXT,
369  \$ ictxt_new, ictxt_save, idum3, int_temp, ja_new,
370  \$ laf_min, level_dist, llda, mycol, myrow,
371  \$ my_num_cols, nb, np, npcol, nprow, np_save,
372  \$ odd_size, part_offset, part_size, return_code,
373  \$ store_n_a, temp, work_size_min
374 * ..
375 * .. Local Arrays ..
376  INTEGER DESCA_1XP( 7 ), PARAM_CHECK( 7, 3 )
377 * ..
378 * .. External Subroutines ..
379  EXTERNAL blacs_get, blacs_gridexit, blacs_gridinfo,
380  \$ desc_convert, globchk, pxerbla, reshape, zaxpy,
381  \$ zgemm, zgerv2d, zgesd2d, zlamov, zlatcpy,
382  \$ zpbtrf, zpotrf, zsyrk, ztbtrs, ztrmm, ztrrv2d,
383  \$ ztrsd2d, ztrsm, ztrtrs
384 * ..
385 * .. External Functions ..
386  LOGICAL LSAME
387  INTEGER NUMROC
388  EXTERNAL lsame, numroc
389 * ..
390 * .. Intrinsic Functions ..
391  INTRINSIC ichar, min, mod
392 * ..
393 * .. Executable Statements ..
394 *
395 * Test the input parameters
396 *
397  info = 0
398 *
400 * parameters, check that grid is of right shape.
401 *
402  desca_1xp( 1 ) = 501
403 *
404  temp = desca( dtype_ )
405  IF( temp .EQ. 502 ) THEN
406 * Temporarily set the descriptor type to 1xP type
407  desca( dtype_ ) = 501
408  ENDIF
409 *
410  CALL desc_convert( desca, desca_1xp, return_code )
411 *
412  desca( dtype_ ) = temp
413 *
414  IF( return_code .NE. 0) THEN
415  info = -( 5*100 + 2 )
416  ENDIF
417 *
418 * Get values out of descriptor for use in code.
419 *
420  ictxt = desca_1xp( 2 )
421  csrc = desca_1xp( 5 )
422  nb = desca_1xp( 4 )
423  llda = desca_1xp( 6 )
424  store_n_a = desca_1xp( 3 )
425 *
426 * Get grid parameters
427 *
428 *
429  CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
430  np = nprow * npcol
431 *
432 *
433 *
434  IF( lwork .LT. -1) THEN
435  info = -9
436  ELSE IF ( lwork .EQ. -1 ) THEN
437  idum3 = -1
438  ELSE
439  idum3 = 1
440  ENDIF
441 *
442  IF( n .LT. 0 ) THEN
443  info = -1
444  ENDIF
445 *
446  IF( n+ja-1 .GT. store_n_a ) THEN
447  info = -( 5*100 + 6 )
448  ENDIF
449 *
450 * Argument checking that is specific to Divide & Conquer routine
451 *
452  IF( nprow .NE. 1 ) THEN
453  info = -( 5*100+2 )
454  ENDIF
455 *
456  IF( n .GT. np*nb-mod( ja-1, nb )) THEN
457  info = -( 1 )
458  CALL pxerbla( ictxt,
459  \$ 'PZPTTRF, D&C alg.: only 1 block per proc',
460  \$ -info )
461  RETURN
462  ENDIF
463 *
464  IF((ja+n-1.GT.nb) .AND. ( nb.LT.2*int_one )) THEN
465  info = -( 5*100+4 )
466  CALL pxerbla( ictxt,
467  \$ 'PZPTTRF, D&C alg.: NB too small',
468  \$ -info )
469  RETURN
470  ENDIF
471 *
472 *
473 * Check auxiliary storage size
474 *
475  laf_min = (12*npcol + 3*nb)
476 *
477  IF( laf .LT. laf_min ) THEN
478  info = -7
479 * put minimum value of laf into AF( 1 )
480  af( 1 ) = laf_min
481  CALL pxerbla( ictxt,
482  \$ 'PZPTTRF: auxiliary storage error ',
483  \$ -info )
484  RETURN
485  ENDIF
486 *
487 * Check worksize
488 *
489  work_size_min = 8*npcol
490 *
491  work( 1 ) = work_size_min
492 *
493  IF( lwork .LT. work_size_min ) THEN
494  IF( lwork .NE. -1 ) THEN
495  info = -9
496  CALL pxerbla( ictxt,
497  \$ 'PZPTTRF: worksize error ',
498  \$ -info )
499  ENDIF
500  RETURN
501  ENDIF
502 *
503 * Pack params and positions into arrays for global consistency check
504 *
505  param_check( 7, 1 ) = desca(5)
506  param_check( 6, 1 ) = desca(4)
507  param_check( 5, 1 ) = desca(3)
508  param_check( 4, 1 ) = desca(1)
509  param_check( 3, 1 ) = ja
510  param_check( 2, 1 ) = n
511  param_check( 1, 1 ) = idum3
512 *
513  param_check( 7, 2 ) = 505
514  param_check( 6, 2 ) = 504
515  param_check( 5, 2 ) = 503
516  param_check( 4, 2 ) = 501
517  param_check( 3, 2 ) = 4
518  param_check( 2, 2 ) = 1
519  param_check( 1, 2 ) = 9
520 *
521 * Want to find errors with MIN( ), so if no error, set it to a big
522 * number. If there already is an error, multiply by the the
523 * descriptor multiplier.
524 *
525  IF( info.GE.0 ) THEN
526  info = bignum
527  ELSE IF( info.LT.-descmult ) THEN
528  info = -info
529  ELSE
530  info = -info * descmult
531  END IF
532 *
533 * Check consistency across processors
534 *
535  CALL globchk( ictxt, 7, param_check, 7,
536  \$ param_check( 1, 3 ), info )
537 *
538 * Prepare output: set info = 0 if no error, and divide by DESCMULT
539 * if error is not in a descriptor entry.
540 *
541  IF( info.EQ.bignum ) THEN
542  info = 0
543  ELSE IF( mod( info, descmult ) .EQ. 0 ) THEN
544  info = -info / descmult
545  ELSE
546  info = -info
547  END IF
548 *
549  IF( info.LT.0 ) THEN
550  CALL pxerbla( ictxt, 'PZPTTRF', -info )
551  RETURN
552  END IF
553 *
554 * Quick return if possible
555 *
556  IF( n.EQ.0 )
557  \$ RETURN
558 *
559 *
561 * the beginning part of the relevant data
562 *
563  part_offset = nb*( (ja-1)/(npcol*nb) )
564 *
565  IF ( (mycol-csrc) .LT. (ja-part_offset-1)/nb ) THEN
566  part_offset = part_offset + nb
567  ENDIF
568 *
569  IF ( mycol .LT. csrc ) THEN
570  part_offset = part_offset - nb
571  ENDIF
572 *
573 * Form a new BLACS grid (the "standard form" grid) with only procs
574 * holding part of the matrix, of size 1xNP where NP is adjusted,
575 * starting at csrc=0, with JA modified to reflect dropped procs.
576 *
577 * First processor to hold part of the matrix:
578 *
579  first_proc = mod( ( ja-1 )/nb+csrc, npcol )
580 *
581 * Calculate new JA one while dropping off unused processors.
582 *
583  ja_new = mod( ja-1, nb ) + 1
584 *
585 * Save and compute new value of NP
586 *
587  np_save = np
588  np = ( ja_new+n-2 )/nb + 1
589 *
590 * Call utility routine that forms "standard-form" grid
591 *
592  CALL reshape( ictxt, int_one, ictxt_new, int_one,
593  \$ first_proc, int_one, np )
594 *
595 * Use new context from standard grid as context.
596 *
597  ictxt_save = ictxt
598  ictxt = ictxt_new
599  desca_1xp( 2 ) = ictxt_new
600 *
601 * Get information about new grid.
602 *
603  CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
604 *
605 * Drop out processors that do not have part of the matrix.
606 *
607  IF( myrow .LT. 0 ) THEN
608  GOTO 1234
609  ENDIF
610 *
611 * ********************************
612 * Values reused throughout routine
613 *
614 * User-input value of partition size
615 *
616  part_size = nb
617 *
618 * Number of columns in each processor
619 *
620  my_num_cols = numroc( n, part_size, mycol, 0, npcol )
621 *
622 * Offset in columns to beginning of main partition in each proc
623 *
624  IF ( mycol .EQ. 0 ) THEN
625  part_offset = part_offset+mod( ja_new-1, part_size )
626  my_num_cols = my_num_cols - mod(ja_new-1, part_size )
627  ENDIF
628 *
629 * Size of main (or odd) partition in each processor
630 *
631  odd_size = my_num_cols
632  IF ( mycol .LT. np-1 ) THEN
633  odd_size = odd_size - int_one
634  ENDIF
635 *
636 *
637 * Zero out space for fillin
638 *
639  DO 10 i=1, laf_min
640  af( i ) = czero
641  10 CONTINUE
642 *
643 * Begin main code
644 *
645 *
646 ********************************************************************
647 * PHASE 1: Local computation phase.
648 ********************************************************************
649 *
650 *
651  IF ( mycol .LT. np-1 ) THEN
652 * Transfer last triangle D_i of local matrix to next processor
653 * which needs it to calculate fillin due to factorization of
654 * its main (odd) block A_i.
655 * Overlap the send with the factorization of A_i.
656 *
657  CALL ztrsd2d( ictxt, 'U', 'N', 1, 1,
658  \$ e( part_offset+odd_size+1 ), llda-1, 0,
659  \$ mycol+1 )
660 *
661  ENDIF
662 *
663 *
664 * Factor main partition A_i = L_i {L_i}^C in each processor
665 * Or A_i = {U_i}^C {U_i} if E is the upper superdiagonal
666 *
667  CALL zpttrf( odd_size, d( part_offset+1 ), e( part_offset+1 ),
668  \$ info )
669 *
670  IF( info.NE.0 ) THEN
671  info = mycol+1
672  GOTO 1500
673  ENDIF
674 *
675 *
676  IF ( mycol .LT. np-1 ) THEN
677 * Apply factorization to odd-even connection block B_i
678 *
679 *
680 * Perform the triangular system solve {L_i}{{B'}_i}^C = {B_i}^C
681 * by dividing B_i by diagonal element
682 *
683  e( part_offset+odd_size ) = e( part_offset+odd_size )/
684  \$ d( part_offset+odd_size )
685 *
686 *
687 *
688 * Compute contribution to diagonal block(s) of reduced system.
689 * {C'}_i = {C_i}-{{B'}_i}{{B'}_i}^C
690 *
691  d( part_offset+odd_size+1 ) = d( part_offset+odd_size+1 )-
692  \$ d( part_offset+odd_size )*dble( e( part_offset+odd_size )*
693  \$ dconjg( e( part_offset+odd_size ) ) )
694 *
695  ENDIF
696 * End of "if ( MYCOL .lt. NP-1 )..." loop
697 *
698 *
699  1500 CONTINUE
700 * If the processor could not locally factor, it jumps here.
701 *
702  IF ( mycol .NE. 0 ) THEN
703 *
704 * Receive previously transmitted matrix section, which forms
705 * the right-hand-side for the triangular solve that calculates
706 * the "spike" fillin.
707 *
708 *
709  CALL ztrrv2d( ictxt, 'U', 'N', 1, 1, af( 1 ), odd_size, 0,
710  \$ mycol-1 )
711 *
712  IF (info.EQ.0) THEN
713 *
714 * Calculate the "spike" fillin, \${L_i} {{G}_i}^C = {D_i}\$ .
715 *
716  CALL zpttrsv( 'L', 'N', odd_size, int_one, d( part_offset+1 ),
717  \$ e( part_offset+1 ), af( 1 ), odd_size, info )
718 *
719 * Divide by D
720 *
721  DO 20 i=1, odd_size
722  af( i ) = af( i )/d( part_offset+i )
723  20 CONTINUE
724 *
725 *
726 * Calculate the update block for previous proc, E_i = G_i{G_i}^C
727 *
728 *
729 * Since there is no element-by-element vector multiplication in
730 * the BLAS, this loop must be hardwired in without a BLAS call
731 *
732  int_temp = odd_size*int_one+2+1
733  af( int_temp ) = 0
734 *
735  DO 30 i=1, odd_size
736  af( int_temp ) = af( int_temp )-d( part_offset+i )*
737  \$ ( af( i )*dconjg( af( i ) ) )
738  30 CONTINUE
739 *
740 *
741 * Initiate send of E_i to previous processor to overlap
742 * with next computation.
743 *
744  CALL zgesd2d( ictxt, int_one, int_one, af( odd_size+3 ),
745  \$ int_one, 0, mycol-1 )
746 *
747 *
748  IF ( mycol .LT. np-1 ) THEN
749 *
750 * Calculate off-diagonal block(s) of reduced system.
751 * Note: for ease of use in solution of reduced system, store
752 * L's off-diagonal block in conjugate transpose form.
753 * {F_i}^C = {H_i}{{B'}_i}^C
754 *
755  af( odd_size+1 ) =
756  \$ - d( part_offset+odd_size )
757  \$ * dconjg( e( part_offset+odd_size )
758  \$ * af( odd_size ) )
759 *
760 *
761  ENDIF
762 *
763  ENDIF
764 * End of "if ( MYCOL .ne. 0 )..."
765 *
766  ENDIF
767 * End of "if (info.eq.0) then"
768 *
769 *
770 * Check to make sure no processors have found errors
771 *
772  CALL igamx2d( ictxt, 'A', ' ', 1, 1, info, 1, info, info,
773  \$ -1, 0, 0 )
774 *
775  IF( mycol.EQ.0 ) THEN
776  CALL igebs2d( ictxt, 'A', ' ', 1, 1, info, 1 )
777  ELSE
778  CALL igebr2d( ictxt, 'A', ' ', 1, 1, info, 1, 0, 0 )
779  ENDIF
780 *
781  IF ( info.NE.0 ) THEN
782  GOTO 1000
783  ENDIF
784 * No errors found, continue
785 *
786 *
787 ********************************************************************
788 * PHASE 2: Formation and factorization of Reduced System.
789 ********************************************************************
790 *
791 * Gather up local sections of reduced system
792 *
793 *
794 * The last processor does not participate in the factorization of
795 * the reduced system, having sent its E_i already.
796  IF( mycol .EQ. npcol-1 ) THEN
797  GOTO 14
798  ENDIF
799 *
800 * Initiate send of off-diag block(s) to overlap with next part.
801 * Off-diagonal block needed on neighboring processor to start
802 * algorithm.
803 *
804  IF( (mod( mycol+1, 2 ) .EQ. 0) .AND. ( mycol .GT. 0 ) ) THEN
805 *
806  CALL zgesd2d( ictxt, int_one, int_one,
807  \$ af( odd_size+1 ),
808  \$ int_one, 0, mycol-1 )
809 *
810  ENDIF
811 *
812 * Copy last diagonal block into AF storage for subsequent
813 * operations.
814 *
815  af( odd_size+2 ) =
816  \$ dcmplx( d( part_offset+odd_size+1 ) )
817 *
818 * Receive cont. to diagonal block that is stored on this proc.
819 *
820  IF( mycol.LT. npcol-1 ) THEN
821 *
822  CALL zgerv2d( ictxt, int_one, int_one,
823  \$ af( odd_size+2+1 ),
824  \$ int_one, 0,
825  \$ mycol+1 )
826 *
827 * Add contribution to diagonal block
828 *
829  af( odd_size+2 ) = af( odd_size+2 )+af( odd_size+3 )
830 *
831  ENDIF
832 *
833 *
834 * *************************************
835 * Modification Loop
836 *
837 * The distance for sending and receiving for each level starts
838 * at 1 for the first level.
839  level_dist = 1
840 *
841 * Do until this proc is needed to modify other procs' equations
842 *
843  12 CONTINUE
844  IF( mod( (mycol+1)/level_dist, 2) .NE. 0 ) GOTO 11
845 *
846 * Receive and add contribution to diagonal block from the left
847 *
848  IF( mycol-level_dist .GE. 0 ) THEN
849  CALL zgerv2d( ictxt, int_one, int_one, work( 1 ),
850  \$ int_one, 0, mycol-level_dist )
851 *
852  af( odd_size+2 ) = af( odd_size+2 )+work( 1 )
853 *
854  ENDIF
855 *
856 * Receive and add contribution to diagonal block from the right
857 *
858  IF( mycol+level_dist .LT. npcol-1 ) THEN
859  CALL zgerv2d( ictxt, int_one, int_one, work( 1 ),
860  \$ int_one, 0, mycol+level_dist )
861 *
862  af( odd_size+2 ) = af( odd_size+2 )+work( 1 )
863 *
864  ENDIF
865 *
866  level_dist = level_dist*2
867 *
868  GOTO 12
869  11 CONTINUE
870 * [End of GOTO Loop]
871 *
872 *
873 * *********************************
874 * Calculate and use this proc's blocks to modify other procs'...
875  IF( af( odd_size+2 ) .EQ. czero ) THEN
876  info = npcol + mycol
877  ENDIF
878 *
879 * ****************************************************************
880 * Receive offdiagonal block from processor to right.
881 * If this is the first group of processors, the receive comes
882 * from a different processor than otherwise.
883 *
884  IF( level_dist .EQ. 1 )THEN
885  comm_proc = mycol + 1
886 *
887 * Move block into place that it will be expected to be for
888 * calcs.
889 *
890  af( odd_size+3 ) = af( odd_size+1 )
891 *
892  ELSE
893  comm_proc = mycol + level_dist/2
894  ENDIF
895 *
896  IF( mycol/level_dist .LE. (npcol-1)/level_dist-2 )THEN
897 *
898  CALL zgerv2d( ictxt, int_one, int_one,
899  \$ af( odd_size+1 ),
900  \$ int_one, 0, comm_proc )
901 *
902  IF( info .EQ. 0 ) THEN
903 *
904 *
905 * Modify upper off_diagonal block with diagonal block
906 *
907 *
908  af( odd_size+1 ) = af( odd_size+1 )/af( odd_size+2 )
909 *
910  ENDIF
911 * End of "if ( info.eq.0 ) then"
912 *
913 * Calculate contribution from this block to next diagonal block
914 *
915  work( 1 ) = -one*af( odd_size+1 )*af( odd_size+2 )
916  \$ *dconjg( af( odd_size+1 ) )
917 *
918 * Send contribution to diagonal block's owning processor.
919 *
920  CALL zgesd2d( ictxt, int_one, int_one, work( 1 ), int_one,
921  \$ 0, mycol+level_dist )
922 *
923  ENDIF
924 * End of "if( mycol/level_dist .le. (npcol-1)/level_dist-2 )..."
925 *
926 *
927 * ****************************************************************
928 * Receive off_diagonal block from left and use to finish with this
929 * processor.
930 *
931  IF( (mycol/level_dist .GT. 0 ).AND.
932  \$ ( mycol/level_dist .LE. (npcol-1)/level_dist-1 ) ) THEN
933 *
934  IF( level_dist .GT. 1)THEN
935 *
936 * Receive offdiagonal block(s) from proc level_dist/2 to the
937 * left
938 *
939  CALL zgerv2d( ictxt, int_one, int_one,
940  \$ af( odd_size+2+1 ),
941  \$ int_one, 0, mycol-level_dist/2 )
942 *
943  ENDIF
944 *
945 *
946  IF( info.EQ.0 ) THEN
947 *
948 * Use diagonal block(s) to modify this offdiagonal block
949 *
950  af( odd_size+3 ) = ( af( odd_size+3 ) )
951  \$ /af( odd_size+2 )
952 *
953  ENDIF
954 * End of "if( info.eq.0 ) then"
955 *
956 * Use offdiag block(s) to calculate modification to diag block
957 * of processor to the left
958 *
959  work( 1 ) = -one*af( odd_size+3 )*af( odd_size+2 )
960  \$ *dconjg( af( odd_size+3 ) )
961 *
962 * Send contribution to diagonal block's owning processor.
963 *
964  CALL zgesd2d( ictxt, int_one, int_one, work( 1 ), int_one,
965  \$ 0, mycol-level_dist )
966 *
967 * *******************************************************
968 *
969  IF( mycol/level_dist .LE. (npcol-1)/level_dist-2 ) THEN
970 *
971 * Decide which processor offdiagonal block(s) goes to
972 *
973  IF( ( mod( mycol/( 2*level_dist ),2 )) .EQ.0 ) THEN
974  comm_proc = mycol + level_dist
975  ELSE
976  comm_proc = mycol - level_dist
977  ENDIF
978 *
979 * Use offdiagonal blocks to calculate offdiag
980 * block to send to neighboring processor. Depending
981 * on circumstances, may need to transpose the matrix.
982 *
983  work( 1 ) = -one*af( odd_size+3 )
984  \$ * af( odd_size+2 )
985  \$ * af( odd_size+1 )
986 *
987 * Send contribution to offdiagonal block's owning processor.
988 *
989  CALL zgesd2d( ictxt, int_one, int_one, work( 1 ), int_one,
990  \$ 0, comm_proc )
991 *
992  ENDIF
993 *
994  ENDIF
995 * End of "if( mycol/level_dist.le. (npcol-1)/level_dist -1 )..."
996 *
997  14 CONTINUE
998 *
999 *
1000  1000 CONTINUE
1001 *
1002 *
1003 * Free BLACS space used to hold standard-form grid.
1004 *
1005  IF( ictxt_save .NE. ictxt_new ) THEN
1006  CALL blacs_gridexit( ictxt_new )
1007  ENDIF
1008 *
1009  1234 CONTINUE
1010 *
1011 * Restore saved input parameters
1012 *
1013  ictxt = ictxt_save
1014  np = np_save
1015 *
1016 * Output minimum worksize
1017 *
1018  work( 1 ) = work_size_min
1019 *
1020 * Make INFO consistent across processors
1021 *
1022  CALL igamx2d( ictxt, 'A', ' ', 1, 1, info, 1, info, info,
1023  \$ -1, 0, 0 )
1024 *
1025  IF( mycol.EQ.0 ) THEN
1026  CALL igebs2d( ictxt, 'A', ' ', 1, 1, info, 1 )
1027  ELSE
1028  CALL igebr2d( ictxt, 'A', ' ', 1, 1, info, 1, 0, 0 )
1029  ENDIF
1030 *
1031 *
1032  RETURN
1033 *
1034 * End of PZPTTRF
1035 *
1036  END
globchk
subroutine globchk(ICTXT, N, X, LDX, IWORK, INFO)
Definition: pchkxmat.f:403
zpttrsv
subroutine zpttrsv(UPLO, TRANS, N, NRHS, D, E, B, LDB, INFO)
Definition: zpttrsv.f:3
reshape
void reshape(int *context_in, int *major_in, int *context_out, int *major_out, int *first_proc, int *nprow_new, int *npcol_new)
Definition: reshape.c:77
desc_convert
subroutine desc_convert(DESC_IN, DESC_OUT, INFO)
Definition: desc_convert.f:2
pzpttrf
subroutine pzpttrf(N, D, E, JA, DESCA, AF, LAF, WORK, LWORK, INFO)
Definition: pzpttrf.f:3
pxerbla
subroutine pxerbla(ICTXT, SRNAME, INFO)
Definition: pxerbla.f:2
min
#define min(A, B)
Definition: pcgemr.c:181
zlatcpy
subroutine zlatcpy(UPLO, M, N, A, LDA, B, LDB)
Definition: zlatcpy.f:2