LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cgedmdq()

subroutine cgedmdq ( character, intent(in) jobs,
character, intent(in) jobz,
character, intent(in) jobr,
character, intent(in) jobq,
character, intent(in) jobt,
character, intent(in) jobf,
integer, intent(in) whtsvd,
integer, intent(in) m,
integer, intent(in) n,
complex(kind=wp), dimension(ldf,*), intent(inout) f,
integer, intent(in) ldf,
complex(kind=wp), dimension(ldx,*), intent(out) x,
integer, intent(in) ldx,
complex(kind=wp), dimension(ldy,*), intent(out) y,
integer, intent(in) ldy,
integer, intent(in) nrnk,
real(kind=wp), intent(in) tol,
integer, intent(out) k,
complex(kind=wp), dimension(*), intent(out) eigs,
complex(kind=wp), dimension(ldz,*), intent(out) z,
integer, intent(in) ldz,
real(kind=wp), dimension(*), intent(out) res,
complex(kind=wp), dimension(ldb,*), intent(out) b,
integer, intent(in) ldb,
complex(kind=wp), dimension(ldv,*), intent(out) v,
integer, intent(in) ldv,
complex(kind=wp), dimension(lds,*), intent(out) s,
integer, intent(in) lds,
complex(kind=wp), dimension(*), intent(out) zwork,
integer, intent(in) lzwork,
real(kind=wp), dimension(*), intent(out) work,
integer, intent(in) lwork,
integer, dimension(*), intent(out) iwork,
integer, intent(in) liwork,
integer, intent(out) info )

CGEDMDQ computes the Dynamic Mode Decomposition (DMD) for a pair of data snapshot matrices.

Purpose:
!>    CGEDMDQ computes the Dynamic Mode Decomposition (DMD) for
!>    a pair of data snapshot matrices, using a QR factorization
!>    based compression of the data. For the input matrices
!>    X and Y such that Y = A*X with an unaccessible matrix
!>    A, CGEDMDQ computes a certain number of Ritz pairs of A using
!>    the standard Rayleigh-Ritz extraction from a subspace of
!>    range(X) that is determined using the leading left singular
!>    vectors of X. Optionally, CGEDMDQ returns the residuals
!>    of the computed Ritz pairs, the information needed for
!>    a refinement of the Ritz vectors, or the eigenvectors of
!>    the Exact DMD.
!>    For further details see the references listed
!>    below. For more details of the implementation see [3].
!>    
References:
!>    [1] P. Schmid: Dynamic mode decomposition of numerical
!>        and experimental data,
!>        Journal of Fluid Mechanics 656, 5-28, 2010.
!>    [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal
!>        decompositions: analysis and enhancements,
!>        SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018.
!>    [3] Z. Drmac: A LAPACK implementation of the Dynamic
!>        Mode Decomposition I. Technical report. AIMDyn Inc.
!>        and LAPACK Working Note 298.
!>    [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L.
!>        Brunton, N. Kutz: On Dynamic Mode Decomposition:
!>        Theory and Applications, Journal of Computational
!>        Dynamics 1(2), 391 -421, 2014.
!>    
Developed and supported by:
!>    Developed and coded by Zlatko Drmac, Faculty of Science,
!>    University of Zagreb;  drmac@math.hr
!>    In cooperation with
!>    AIMdyn Inc., Santa Barbara, CA.
!>    and supported by
!>    - DARPA SBIR project  Contract No: W31P4Q-21-C-0007
!>    - DARPA PAI project  Contract No: HR0011-18-9-0033
!>    - DARPA MoDyL project 
!>    Contract No: HR0011-16-C-0116
!>    Any opinions, findings and conclusions or recommendations
!>    expressed in this material are those of the author and
!>    do not necessarily reflect the views of the DARPA SBIR
!>    Program Office.
!>    
Developed and supported by:
!>    Approved for Public Release, Distribution Unlimited.
!>    Cleared by DARPA on September 29, 2022
!>    
Parameters
[in]JOBS
!>    JOBS (input) CHARACTER*1
!>    Determines whether the initial data snapshots are scaled
!>    by a diagonal matrix. The data snapshots are the columns
!>    of F. The leading N-1 columns of F are denoted X and the
!>    trailing N-1 columns are denoted Y.
!>    'S' :: The data snapshots matrices X and Y are multiplied
!>           with a diagonal matrix D so that X*D has unit
!>           nonzero columns (in the Euclidean 2-norm)
!>    'C' :: The snapshots are scaled as with the 'S' option.
!>           If it is found that an i-th column of X is zero
!>           vector and the corresponding i-th column of Y is
!>           non-zero, then the i-th column of Y is set to
!>           zero and a warning flag is raised.
!>    'Y' :: The data snapshots matrices X and Y are multiplied
!>           by a diagonal matrix D so that Y*D has unit
!>           nonzero columns (in the Euclidean 2-norm)
!>    'N' :: No data scaling.
!>    
[in]JOBZ
!>    JOBZ (input) CHARACTER*1
!>    Determines whether the eigenvectors (Koopman modes) will
!>    be computed.
!>    'V' :: The eigenvectors (Koopman modes) will be computed
!>           and returned in the matrix Z.
!>           See the description of Z.
!>    'F' :: The eigenvectors (Koopman modes) will be returned
!>           in factored form as the product Z*V, where Z
!>           is orthonormal and V contains the eigenvectors
!>           of the corresponding Rayleigh quotient.
!>           See the descriptions of F, V, Z.
!>    'Q' :: The eigenvectors (Koopman modes) will be returned
!>           in factored form as the product Q*Z, where Z
!>           contains the eigenvectors of the compression of the
!>           underlying discretised operator onto the span of
!>           the data snapshots. See the descriptions of F, V, Z.
!>           Q is from the inital QR facorization.
!>    'N' :: The eigenvectors are not computed.
!>    
[in]JOBR
!>    JOBR (input) CHARACTER*1
!>    Determines whether to compute the residuals.
!>    'R' :: The residuals for the computed eigenpairs will
!>           be computed and stored in the array RES.
!>           See the description of RES.
!>           For this option to be legal, JOBZ must be 'V'.
!>    'N' :: The residuals are not computed.
!>    
[in]JOBQ
!>    JOBQ (input) CHARACTER*1
!>    Specifies whether to explicitly compute and return the
!>    unitary matrix from the QR factorization.
!>    'Q' :: The matrix Q of the QR factorization of the data
!>           snapshot matrix is computed and stored in the
!>           array F. See the description of F.
!>    'N' :: The matrix Q is not explicitly computed.
!>    
[in]JOBT
!>    JOBT (input) CHARACTER*1
!>    Specifies whether to return the upper triangular factor
!>    from the QR factorization.
!>    'R' :: The matrix R of the QR factorization of the data
!>           snapshot matrix F is returned in the array Y.
!>           See the description of Y and Further details.
!>    'N' :: The matrix R is not returned.
!>    
[in]JOBF
!>    JOBF (input) CHARACTER*1
!>    Specifies whether to store information needed for post-
!>    processing (e.g. computing refined Ritz vectors)
!>    'R' :: The matrix needed for the refinement of the Ritz
!>           vectors is computed and stored in the array B.
!>           See the description of B.
!>    'E' :: The unscaled eigenvectors of the Exact DMD are
!>           computed and returned in the array B. See the
!>           description of B.
!>    'N' :: No eigenvector refinement data is computed.
!>    To be useful on exit, this option needs JOBQ='Q'.
!>    
[in]WHTSVD
!>    WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 }
!>    Allows for a selection of the SVD algorithm from the
!>    LAPACK library.
!>    1 :: CGESVD (the QR SVD algorithm)
!>    2 :: CGESDD (the Divide and Conquer algorithm; if enough
!>         workspace available, this is the fastest option)
!>    3 :: CGESVDQ (the preconditioned QR SVD  ; this and 4
!>         are the most accurate options)
!>    4 :: CGEJSV (the preconditioned Jacobi SVD; this and 3
!>         are the most accurate options)
!>    For the four methods above, a significant difference in
!>    the accuracy of small singular values is possible if
!>    the snapshots vary in norm so that X is severely
!>    ill-conditioned. If small (smaller than EPS*||X||)
!>    singular values are of interest and JOBS=='N',  then
!>    the options (3, 4) give the most accurate results, where
!>    the option 4 is slightly better and with stronger
!>    theoretical background.
!>    If JOBS=='S', i.e. the columns of X will be normalized,
!>    then all methods give nearly equally accurate results.
!>    
[in]M
!>    M (input) INTEGER, M >= 0
!>    The state space dimension (the number of rows of F).
!>    
[in]N
!>    N (input) INTEGER, 0 <= N <= M
!>    The number of data snapshots from a single trajectory,
!>    taken at equidistant discrete times. This is the
!>    number of columns of F.
!>    
[in,out]F
!>    F (input/output) COMPLEX(KIND=WP) M-by-N array
!>    > On entry,
!>    the columns of F are the sequence of data snapshots
!>    from a single trajectory, taken at equidistant discrete
!>    times. It is assumed that the column norms of F are
!>    in the range of the normalized floating point numbers.
!>    < On exit,
!>    If JOBQ == 'Q', the array F contains the orthogonal
!>    matrix/factor of the QR factorization of the initial
!>    data snapshots matrix F. See the description of JOBQ.
!>    If JOBQ == 'N', the entries in F strictly below the main
!>    diagonal contain, column-wise, the information on the
!>    Householder vectors, as returned by CGEQRF. The
!>    remaining information to restore the orthogonal matrix
!>    of the initial QR factorization is stored in ZWORK(1:MIN(M,N)).
!>    See the description of ZWORK.
!>    
[in]LDF
!>    LDF (input) INTEGER, LDF >= M
!>    The leading dimension of the array F.
!>    
[in,out]X
!>    X (workspace/output) COMPLEX(KIND=WP) MIN(M,N)-by-(N-1) array
!>    X is used as workspace to hold representations of the
!>    leading N-1 snapshots in the orthonormal basis computed
!>    in the QR factorization of F.
!>    On exit, the leading K columns of X contain the leading
!>    K left singular vectors of the above described content
!>    of X. To lift them to the space of the left singular
!>    vectors U(:,1:K) of the input data, pre-multiply with the
!>    Q factor from the initial QR factorization.
!>    See the descriptions of F, K, V  and Z.
!>    
[in]LDX
!>    LDX (input) INTEGER, LDX >= N
!>    The leading dimension of the array X.
!>    
[in,out]Y
!>    Y (workspace/output) COMPLEX(KIND=WP) MIN(M,N)-by-(N) array
!>    Y is used as workspace to hold representations of the
!>    trailing N-1 snapshots in the orthonormal basis computed
!>    in the QR factorization of F.
!>    On exit,
!>    If JOBT == 'R', Y contains the MIN(M,N)-by-N upper
!>    triangular factor from the QR factorization of the data
!>    snapshot matrix F.
!>    
[in]LDY
!>    LDY (input) INTEGER , LDY >= N
!>    The leading dimension of the array Y.
!>    
[in]NRNK
!>    NRNK (input) INTEGER
!>    Determines the mode how to compute the numerical rank,
!>    i.e. how to truncate small singular values of the input
!>    matrix X. On input, if
!>    NRNK = -1 :: i-th singular value sigma(i) is truncated
!>                 if sigma(i) <= TOL*sigma(1)
!>                 This option is recommended.
!>    NRNK = -2 :: i-th singular value sigma(i) is truncated
!>                 if sigma(i) <= TOL*sigma(i-1)
!>                 This option is included for R&D purposes.
!>                 It requires highly accurate SVD, which
!>                 may not be feasible.
!>    The numerical rank can be enforced by using positive
!>    value of NRNK as follows:
!>    0 < NRNK <= N-1 :: at most NRNK largest singular values
!>    will be used. If the number of the computed nonzero
!>    singular values is less than NRNK, then only those
!>    nonzero values will be used and the actually used
!>    dimension is less than NRNK. The actual number of
!>    the nonzero singular values is returned in the variable
!>    K. See the description of K.
!>    
[in]TOL
!>    TOL (input) REAL(KIND=WP), 0 <= TOL < 1
!>    The tolerance for truncating small singular values.
!>    See the description of NRNK.
!>    
[out]K
!>    K (output) INTEGER,  0 <= K <= N
!>    The dimension of the SVD/POD basis for the leading N-1
!>    data snapshots (columns of F) and the number of the
!>    computed Ritz pairs. The value of K is determined
!>    according to the rule set by the parameters NRNK and
!>    TOL. See the descriptions of NRNK and TOL.
!>    
[out]EIGS
!>    EIGS (output) COMPLEX(KIND=WP) (N-1)-by-1 array
!>    The leading K (K<=N-1) entries of EIGS contain
!>    the computed eigenvalues (Ritz values).
!>    See the descriptions of K, and Z.
!>    
[out]Z
!>    Z (workspace/output) COMPLEX(KIND=WP)  M-by-(N-1) array
!>    If JOBZ =='V' then Z contains the Ritz vectors. Z(:,i)
!>    is an eigenvector of the i-th Ritz value; ||Z(:,i)||_2=1.
!>    If JOBZ == 'F', then the Z(:,i)'s are given implicitly as
!>    Z*V, where Z contains orthonormal matrix (the product of
!>    Q from the initial QR factorization and the SVD/POD_basis
!>    returned by CGEDMD in X) and the second factor (the
!>    eigenvectors of the Rayleigh quotient) is in the array V,
!>    as returned by CGEDMD. That is,  X(:,1:K)*V(:,i)
!>    is an eigenvector corresponding to EIGS(i). The columns
!>    of V(1:K,1:K) are the computed eigenvectors of the
!>    K-by-K Rayleigh quotient.
!>    See the descriptions of EIGS, X and V.
!>    
[in]LDZ
!>    LDZ (input) INTEGER , LDZ >= M
!>    The leading dimension of the array Z.
!>    
[out]RES
!>    RES (output) REAL(KIND=WP) (N-1)-by-1 array
!>    RES(1:K) contains the residuals for the K computed
!>    Ritz pairs,
!>    RES(i) = || A * Z(:,i) - EIGS(i)*Z(:,i))||_2.
!>    See the description of EIGS and Z.
!>    
[out]B
!>    B (output) COMPLEX(KIND=WP)  MIN(M,N)-by-(N-1) array.
!>    IF JOBF =='R', B(1:N,1:K) contains A*U(:,1:K), and can
!>    be used for computing the refined vectors; see further
!>    details in the provided references.
!>    If JOBF == 'E', B(1:N,1;K) contains
!>    A*U(:,1:K)*W(1:K,1:K), which are the vectors from the
!>    Exact DMD, up to scaling by the inverse eigenvalues.
!>    In both cases, the content of B can be lifted to the
!>    original dimension of the input data by pre-multiplying
!>    with the Q factor from the initial QR factorization.
!>    Here A denotes a compression of the underlying operator.
!>    See the descriptions of F and X.
!>    If JOBF =='N', then B is not referenced.
!>    
[in]LDB
!>    LDB (input) INTEGER, LDB >= MIN(M,N)
!>    The leading dimension of the array B.
!>    
[out]V
!>    V (workspace/output) COMPLEX(KIND=WP) (N-1)-by-(N-1) array
!>    On exit, V(1:K,1:K) V contains the K eigenvectors of
!>    the Rayleigh quotient. The Ritz vectors
!>    (returned in Z) are the product of Q from the initial QR
!>    factorization (see the description of F) X (see the
!>    description of X) and V.
!>    
[in]LDV
!>    LDV (input) INTEGER, LDV >= N-1
!>    The leading dimension of the array V.
!>    
[out]S
!>    S (output) COMPLEX(KIND=WP) (N-1)-by-(N-1) array
!>    The array S(1:K,1:K) is used for the matrix Rayleigh
!>    quotient. This content is overwritten during
!>    the eigenvalue decomposition by CGEEV.
!>    See the description of K.
!>    
[in]LDS
!>    LDS (input) INTEGER, LDS >= N-1
!>    The leading dimension of the array S.
!>    
[out]ZWORK
!>    ZWORK (workspace/output) COMPLEX(KIND=WP) LWORK-by-1 array
!>    On exit,
!>    ZWORK(1:MIN(M,N)) contains the scalar factors of the
!>    elementary reflectors as returned by CGEQRF of the
!>    M-by-N input matrix F.
!>    If the call to CGEDMDQ is only workspace query, then
!>    ZWORK(1) contains the minimal complex workspace length and
!>    ZWORK(2) is the optimal complex workspace length.
!>    Hence, the length of work is at least 2.
!>    See the description of LZWORK.
!>    
[in]LZWORK
!>    LZWORK (input) INTEGER
!>    The minimal length of the  workspace vector ZWORK.
!>    LZWORK is calculated as follows:
!>    Let MLWQR  = N (minimal workspace for CGEQRF[M,N])
!>        MLWDMD = minimal workspace for CGEDMD (see the
!>                 description of LWORK in CGEDMD)
!>        MLWMQR = N (minimal workspace for
!>                   ZUNMQR['L','N',M,N,N])
!>        MLWGQR = N (minimal workspace for ZUNGQR[M,N,N])
!>        MINMN  = MIN(M,N)
!>    Then
!>    LZWORK = MAX(2, MIN(M,N)+MLWQR, MINMN+MLWDMD)
!>    is further updated as follows:
!>       if   JOBZ == 'V' or JOBZ == 'F' THEN
!>            LZWORK = MAX( LZWORK, MINMN+MLWMQR )
!>       if   JOBQ == 'Q' THEN
!>            LZWORK = MAX( ZLWORK, MINMN+MLWGQR)
!>    
[out]WORK
!>    WORK (workspace/output) REAL(KIND=WP) LWORK-by-1 array
!>    On exit,
!>    WORK(1:N-1) contains the singular values of
!>    the input submatrix F(1:M,1:N-1).
!>    If the call to CGEDMDQ is only workspace query, then
!>    WORK(1) contains the minimal workspace length and
!>    WORK(2) is the optimal workspace length. hence, the
!>    length of work is at least 2.
!>    See the description of LWORK.
!>    
[in]LWORK
!>    LWORK (input) INTEGER
!>    The minimal length of the  workspace vector WORK.
!>    LWORK is the same as in CGEDMD, because in CGEDMDQ
!>    only CGEDMD requires real workspace for snapshots
!>    of dimensions MIN(M,N)-by-(N-1).
!>    If on entry LWORK = -1, then a workspace query is
!>    assumed and the procedure only computes the minimal
!>    and the optimal workspace lengths for both WORK and
!>    IWORK. See the descriptions of WORK and IWORK.
!>    
[out]IWORK
!>    IWORK (workspace/output) INTEGER LIWORK-by-1 array
!>    Workspace that is required only if WHTSVD equals
!>    2 , 3 or 4. (See the description of WHTSVD).
!>    If on entry LWORK =-1 or LIWORK=-1, then the
!>    minimal length of IWORK is computed and returned in
!>    IWORK(1). See the description of LIWORK.
!>    
[in]LIWORK
!>    LIWORK (input) INTEGER
!>    The minimal length of the workspace vector IWORK.
!>    If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1
!>    Let M1=MIN(M,N), N1=N-1. Then
!>    If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M,N))
!>    If WHTSVD == 3, then LIWORK >= MAX(1,M+N-1)
!>    If WHTSVD == 4, then LIWORK >= MAX(3,M+3*N)
!>    If on entry LIWORK = -1, then a workspace query is
!>    assumed and the procedure only computes the minimal
!>    and the optimal workspace lengths for both WORK and
!>    IWORK. See the descriptions of WORK and IWORK.
!>    
[out]INFO
!>    INFO (output) INTEGER
!>    -i < 0 :: On entry, the i-th argument had an
!>              illegal value
!>       = 0 :: Successful return.
!>       = 1 :: Void input. Quick exit (M=0 or N=0).
!>       = 2 :: The SVD computation of X did not converge.
!>              Suggestion: Check the input data and/or
!>              repeat with different WHTSVD.
!>       = 3 :: The computation of the eigenvalues did not
!>              converge.
!>       = 4 :: If data scaling was requested on input and
!>              the procedure found inconsistency in the data
!>              such that for some column index i,
!>              X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set
!>              to zero if JOBS=='C'. The computation proceeds
!>              with original or modified data and warning
!>              flag is set with INFO=4.
!>    
Author
Zlatko Drmac

Definition at line 552 of file cgedmdq.f90.

558!
559! -- LAPACK driver routine --
560!
561! -- LAPACK is a software package provided by University of --
562! -- Tennessee, University of California Berkeley, University of --
563! -- Colorado Denver and NAG Ltd.. --
564!
565!.....
566 use, INTRINSIC :: iso_fortran_env, only: real32
567 IMPLICIT NONE
568 INTEGER, PARAMETER :: WP = real32
569!
570! Scalar arguments
571! ~~~~~~~~~~~~~~~~
572 CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBQ, &
573 jobt, jobf
574 INTEGER, INTENT(IN) :: WHTSVD, M, N, LDF, LDX, &
575 ldy, nrnk, ldz, ldb, ldv, &
576 lds, lzwork, lwork, liwork
577 INTEGER, INTENT(OUT) :: INFO, K
578 REAL(KIND=wp), INTENT(IN) :: tol
579!
580! Array arguments
581! ~~~~~~~~~~~~~~~
582 COMPLEX(KIND=WP), INTENT(INOUT) :: F(LDF,*)
583 COMPLEX(KIND=WP), INTENT(OUT) :: X(LDX,*), Y(LDY,*), &
584 z(ldz,*), b(ldb,*), &
585 v(ldv,*), s(lds,*)
586 COMPLEX(KIND=WP), INTENT(OUT) :: EIGS(*)
587 COMPLEX(KIND=WP), INTENT(OUT) :: ZWORK(*)
588 REAL(KIND=wp), INTENT(OUT) :: res(*)
589 REAL(KIND=wp), INTENT(OUT) :: work(*)
590 INTEGER, INTENT(OUT) :: IWORK(*)
591!
592! Parameters
593! ~~~~~~~~~~
594 REAL(KIND=wp), PARAMETER :: one = 1.0_wp
595 REAL(KIND=wp), PARAMETER :: zero = 0.0_wp
596! COMPLEX(KIND=WP), PARAMETER :: ZONE = ( 1.0_WP, 0.0_WP )
597 COMPLEX(KIND=WP), PARAMETER :: ZZERO = ( 0.0_wp, 0.0_wp )
598!
599! Local scalars
600! ~~~~~~~~~~~~~
601 INTEGER :: IMINWR, INFO1, MINMN, MLRWRK, &
602 mlwdmd, mlwgqr, mlwmqr, mlwork, &
603 mlwqr, olwdmd, olwgqr, olwmqr, &
604 olwork, olwqr
605 LOGICAL :: LQUERY, SCCOLX, SCCOLY, WANTQ, &
606 wnttrf, wntres, wntvec, wntvcf, &
607 wntvcq, wntref, wntex
608 CHARACTER(LEN=1) :: JOBVL
609!
610! External functions (BLAS and LAPACK)
611! ~~~~~~~~~~~~~~~~~
612 LOGICAL LSAME
613 EXTERNAL lsame
614!
615! External subroutines (BLAS and LAPACK)
616! ~~~~~~~~~~~~~~~~~~~~
617 EXTERNAL cgedmd, cgeqrf, clacpy, claset, cungqr, &
619!
620! Intrinsic functions
621! ~~~~~~~~~~~~~~~~~~~
622 INTRINSIC max, min, int
623!..........................................................
624!
625! Test the input arguments
626 wntres = lsame(jobr,'R')
627 sccolx = lsame(jobs,'S') .OR. lsame( jobs, 'C' )
628 sccoly = lsame(jobs,'Y')
629 wntvec = lsame(jobz,'V')
630 wntvcf = lsame(jobz,'F')
631 wntvcq = lsame(jobz,'Q')
632 wntref = lsame(jobf,'R')
633 wntex = lsame(jobf,'E')
634 wantq = lsame(jobq,'Q')
635 wnttrf = lsame(jobt,'R')
636 minmn = min(m,n)
637 info = 0
638 lquery = ( ( lwork == -1 ) .OR. ( liwork == -1 ) )
639!
640 IF ( .NOT. (sccolx .OR. sccoly .OR. &
641 lsame(jobs,'N')) ) THEN
642 info = -1
643 ELSE IF ( .NOT. (wntvec .OR. wntvcf .OR. wntvcq &
644 .OR. lsame(jobz,'N')) ) THEN
645 info = -2
646 ELSE IF ( .NOT. (wntres .OR. lsame(jobr,'N')) .OR. &
647 ( wntres .AND. lsame(jobz,'N') ) ) THEN
648 info = -3
649 ELSE IF ( .NOT. (wantq .OR. lsame(jobq,'N')) ) THEN
650 info = -4
651 ELSE IF ( .NOT. ( wnttrf .OR. lsame(jobt,'N') ) ) THEN
652 info = -5
653 ELSE IF ( .NOT. (wntref .OR. wntex .OR. &
654 lsame(jobf,'N') ) ) THEN
655 info = -6
656 ELSE IF ( .NOT. ((whtsvd == 1).OR.(whtsvd == 2).OR. &
657 (whtsvd == 3).OR.(whtsvd == 4)) ) THEN
658 info = -7
659 ELSE IF ( m < 0 ) THEN
660 info = -8
661 ELSE IF ( ( n < 0 ) .OR. ( n > m+1 ) ) THEN
662 info = -9
663 ELSE IF ( ldf < m ) THEN
664 info = -11
665 ELSE IF ( ldx < minmn ) THEN
666 info = -13
667 ELSE IF ( ldy < minmn ) THEN
668 info = -15
669 ELSE IF ( .NOT. (( nrnk == -2).OR.(nrnk == -1).OR. &
670 ((nrnk >= 1).AND.(nrnk <=n ))) ) THEN
671 info = -16
672 ELSE IF ( ( tol < zero ) .OR. ( tol >= one ) ) THEN
673 info = -17
674 ELSE IF ( ldz < m ) THEN
675 info = -21
676 ELSE IF ( (wntref.OR.wntex ).AND.( ldb < minmn ) ) THEN
677 info = -24
678 ELSE IF ( ldv < n-1 ) THEN
679 info = -26
680 ELSE IF ( lds < n-1 ) THEN
681 info = -28
682 END IF
683!
684 IF ( wntvec .OR. wntvcf .OR. wntvcq ) THEN
685 jobvl = 'V'
686 ELSE
687 jobvl = 'N'
688 END IF
689 IF ( info == 0 ) THEN
690 ! Compute the minimal and the optimal workspace
691 ! requirements. Simulate running the code and
692 ! determine minimal and optimal sizes of the
693 ! workspace at any moment of the run.
694 IF ( ( n == 0 ) .OR. ( n == 1 ) ) THEN
695 ! All output except K is void. INFO=1 signals
696 ! the void input. In case of a workspace query,
697 ! the minimal workspace lengths are returned.
698 IF ( lquery ) THEN
699 iwork(1) = 1
700 work(1) = 2
701 work(2) = 2
702 ELSE
703 k = 0
704 END IF
705 info = 1
706 RETURN
707 END IF
708
709 mlrwrk = 2
710 mlwork = 2
711 olwork = 2
712 iminwr = 1
713 mlwqr = max(1,n) ! Minimal workspace length for CGEQRF.
714 mlwork = max(mlwork,minmn + mlwqr)
715
716 IF ( lquery ) THEN
717 CALL cgeqrf( m, n, f, ldf, zwork, zwork, -1, &
718 info1 )
719 olwqr = int(zwork(1))
720 olwork = max(olwork,minmn + olwqr)
721 END IF
722 CALL cgedmd( jobs, jobvl, jobr, jobf, whtsvd, minmn,&
723 n-1, x, ldx, y, ldy, nrnk, tol, k, &
724 eigs, z, ldz, res, b, ldb, v, ldv, &
725 s, lds, zwork, lzwork, work, -1, iwork,&
726 liwork, info1 )
727 mlwdmd = int(zwork(1))
728 mlwork = max(mlwork, minmn + mlwdmd)
729 mlrwrk = max(mlrwrk, int(work(1)))
730 iminwr = max(iminwr, iwork(1))
731 IF ( lquery ) THEN
732 olwdmd = int(zwork(2))
733 olwork = max(olwork, minmn+olwdmd)
734 END IF
735 IF ( wntvec .OR. wntvcf ) THEN
736 mlwmqr = max(1,n)
737 mlwork = max(mlwork, minmn+mlwmqr)
738 IF ( lquery ) THEN
739 CALL cunmqr( 'L','N', m, n, minmn, f, ldf, &
740 zwork, z, ldz, zwork, -1, info1 )
741 olwmqr = int(zwork(1))
742 olwork = max(olwork, minmn+olwmqr)
743 END IF
744 END IF
745 IF ( wantq ) THEN
746 mlwgqr = max(1,n)
747 mlwork = max(mlwork, minmn+mlwgqr)
748 IF ( lquery ) THEN
749 CALL cungqr( m, minmn, minmn, f, ldf, zwork, &
750 zwork, -1, info1 )
751 olwgqr = int(zwork(1))
752 olwork = max(olwork, minmn+olwgqr)
753 END IF
754 END IF
755 IF ( liwork < iminwr .AND. (.NOT.lquery) ) info = -34
756 IF ( lwork < mlrwrk .AND. (.NOT.lquery) ) info = -32
757 IF ( lzwork < mlwork .AND. (.NOT.lquery) ) info = -30
758 END IF
759 IF( info /= 0 ) THEN
760 CALL xerbla( 'CGEDMDQ', -info )
761 RETURN
762 ELSE IF ( lquery ) THEN
763! Return minimal and optimal workspace sizes
764 iwork(1) = iminwr
765 zwork(1) = cmplx(mlwork)
766 zwork(2) = cmplx(olwork)
767 work(1) = real(mlrwrk)
768 work(2) = real(mlrwrk)
769 RETURN
770 END IF
771!.....
772! Initial QR factorization that is used to represent the
773! snapshots as elements of lower dimensional subspace.
774! For large scale computation with M >>N , at this place
775! one can use an out of core QRF.
776!
777 CALL cgeqrf( m, n, f, ldf, zwork, &
778 zwork(minmn+1), lzwork-minmn, info1 )
779!
780! Define X and Y as the snapshots representations in the
781! orthogonal basis computed in the QR factorization.
782! X corresponds to the leading N-1 and Y to the trailing
783! N-1 snapshots.
784 CALL claset( 'L', minmn, n-1, zzero, zzero, x, ldx )
785 CALL clacpy( 'U', minmn, n-1, f, ldf, x, ldx )
786 CALL clacpy( 'A', minmn, n-1, f(1,2), ldf, y, ldy )
787 IF ( m >= 3 ) THEN
788 CALL claset( 'L', minmn-2, n-2, zzero, zzero, &
789 y(3,1), ldy )
790 END IF
791!
792! Compute the DMD of the projected snapshot pairs (X,Y)
793 CALL cgedmd( jobs, jobvl, jobr, jobf, whtsvd, minmn, &
794 n-1, x, ldx, y, ldy, nrnk, tol, k, &
795 eigs, z, ldz, res, b, ldb, v, ldv, &
796 s, lds, zwork(minmn+1), lzwork-minmn, &
797 work, lwork, iwork, liwork, info1 )
798 IF ( info1 == 2 .OR. info1 == 3 ) THEN
799 ! Return with error code. See CGEDMD for details.
800 info = info1
801 RETURN
802 ELSE
803 info = info1
804 END IF
805!
806! The Ritz vectors (Koopman modes) can be explicitly
807! formed or returned in factored form.
808 IF ( wntvec ) THEN
809 ! Compute the eigenvectors explicitly.
810 IF ( m > minmn ) CALL claset( 'A', m-minmn, k, zzero, &
811 zzero, z(minmn+1,1), ldz )
812 CALL cunmqr( 'L','N', m, k, minmn, f, ldf, zwork, z, &
813 ldz, zwork(minmn+1), lzwork-minmn, info1 )
814 ELSE IF ( wntvcf ) THEN
815 ! Return the Ritz vectors (eigenvectors) in factored
816 ! form Z*V, where Z contains orthonormal matrix (the
817 ! product of Q from the initial QR factorization and
818 ! the SVD/POD_basis returned by CGEDMD in X) and the
819 ! second factor (the eigenvectors of the Rayleigh
820 ! quotient) is in the array V, as returned by CGEDMD.
821 CALL clacpy( 'A', n, k, x, ldx, z, ldz )
822 IF ( m > n ) CALL claset( 'A', m-n, k, zzero, zzero, &
823 z(n+1,1), ldz )
824 CALL cunmqr( 'L','N', m, k, minmn, f, ldf, zwork, z, &
825 ldz, zwork(minmn+1), lzwork-minmn, info1 )
826 END IF
827!
828! Some optional output variables:
829!
830! The upper triangular factor R in the initial QR
831! factorization is optionally returned in the array Y.
832! This is useful if this call to CGEDMDQ is to be
833
834! followed by a streaming DMD that is implemented in a
835! QR compressed form.
836 IF ( wnttrf ) THEN ! Return the upper triangular R in Y
837 CALL claset( 'A', minmn, n, zzero, zzero, y, ldy )
838 CALL clacpy( 'U', minmn, n, f, ldf, y, ldy )
839 END IF
840!
841! The orthonormal/unitary factor Q in the initial QR
842! factorization is optionally returned in the array F.
843! Same as with the triangular factor above, this is
844! useful in a streaming DMD.
845 IF ( wantq ) THEN ! Q overwrites F
846 CALL cungqr( m, minmn, minmn, f, ldf, zwork, &
847 zwork(minmn+1), lzwork-minmn, info1 )
848 END IF
849!
850 RETURN
851!
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine cgedmd(jobs, jobz, jobr, jobf, whtsvd, m, n, x, ldx, y, ldy, nrnk, tol, k, eigs, z, ldz, res, b, ldb, w, ldw, s, lds, zwork, lzwork, rwork, lrwork, iwork, liwork, info)
CGEDMD computes the Dynamic Mode Decomposition (DMD) for a pair of data snapshot matrices.
Definition cgedmd.f90:501
subroutine cgeqrf(m, n, a, lda, tau, work, lwork, info)
CGEQRF
Definition cgeqrf.f:144
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:101
subroutine claset(uplo, m, n, alpha, beta, a, lda)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition claset.f:104
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine cungqr(m, n, k, a, lda, tau, work, lwork, info)
CUNGQR
Definition cungqr.f:126
subroutine cunmqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
CUNMQR
Definition cunmqr.f:166
Here is the call graph for this function: