LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
sorbdb3.f
Go to the documentation of this file.
1*> \brief \b SORBDB3
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download SORBDB3 + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorbdb3.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorbdb3.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorbdb3.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE SORBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
20* TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO )
21*
22* .. Scalar Arguments ..
23* INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21
24* ..
25* .. Array Arguments ..
26* REAL PHI(*), THETA(*)
27* REAL TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*),
28* $ X11(LDX11,*), X21(LDX21,*)
29* ..
30*
31*
32*> \par Purpose:
33* =============
34*>
35*>\verbatim
36*>
37*> SORBDB3 simultaneously bidiagonalizes the blocks of a tall and skinny
38*> matrix X with orthonormal columns:
39*>
40*> [ B11 ]
41*> [ X11 ] [ P1 | ] [ 0 ]
42*> [-----] = [---------] [-----] Q1**T .
43*> [ X21 ] [ | P2 ] [ B21 ]
44*> [ 0 ]
45*>
46*> X11 is P-by-Q, and X21 is (M-P)-by-Q. M-P must be no larger than P,
47*> Q, or M-Q. Routines SORBDB1, SORBDB2, and SORBDB4 handle cases in
48*> which M-P is not the minimum dimension.
49*>
50*> The orthogonal matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P),
51*> and (M-Q)-by-(M-Q), respectively. They are represented implicitly by
52*> Householder vectors.
53*>
54*> B11 and B12 are (M-P)-by-(M-P) bidiagonal matrices represented
55*> implicitly by angles THETA, PHI.
56*>
57*>\endverbatim
58*
59* Arguments:
60* ==========
61*
62*> \param[in] M
63*> \verbatim
64*> M is INTEGER
65*> The number of rows X11 plus the number of rows in X21.
66*> \endverbatim
67*>
68*> \param[in] P
69*> \verbatim
70*> P is INTEGER
71*> The number of rows in X11. 0 <= P <= M. M-P <= min(P,Q,M-Q).
72*> \endverbatim
73*>
74*> \param[in] Q
75*> \verbatim
76*> Q is INTEGER
77*> The number of columns in X11 and X21. 0 <= Q <= M.
78*> \endverbatim
79*>
80*> \param[in,out] X11
81*> \verbatim
82*> X11 is REAL array, dimension (LDX11,Q)
83*> On entry, the top block of the matrix X to be reduced. On
84*> exit, the columns of tril(X11) specify reflectors for P1 and
85*> the rows of triu(X11,1) specify reflectors for Q1.
86*> \endverbatim
87*>
88*> \param[in] LDX11
89*> \verbatim
90*> LDX11 is INTEGER
91*> The leading dimension of X11. LDX11 >= P.
92*> \endverbatim
93*>
94*> \param[in,out] X21
95*> \verbatim
96*> X21 is REAL array, dimension (LDX21,Q)
97*> On entry, the bottom block of the matrix X to be reduced. On
98*> exit, the columns of tril(X21) specify reflectors for P2.
99*> \endverbatim
100*>
101*> \param[in] LDX21
102*> \verbatim
103*> LDX21 is INTEGER
104*> The leading dimension of X21. LDX21 >= M-P.
105*> \endverbatim
106*>
107*> \param[out] THETA
108*> \verbatim
109*> THETA is REAL array, dimension (Q)
110*> The entries of the bidiagonal blocks B11, B21 are defined by
111*> THETA and PHI. See Further Details.
112*> \endverbatim
113*>
114*> \param[out] PHI
115*> \verbatim
116*> PHI is REAL array, dimension (Q-1)
117*> The entries of the bidiagonal blocks B11, B21 are defined by
118*> THETA and PHI. See Further Details.
119*> \endverbatim
120*>
121*> \param[out] TAUP1
122*> \verbatim
123*> TAUP1 is REAL array, dimension (P)
124*> The scalar factors of the elementary reflectors that define
125*> P1.
126*> \endverbatim
127*>
128*> \param[out] TAUP2
129*> \verbatim
130*> TAUP2 is REAL array, dimension (M-P)
131*> The scalar factors of the elementary reflectors that define
132*> P2.
133*> \endverbatim
134*>
135*> \param[out] TAUQ1
136*> \verbatim
137*> TAUQ1 is REAL array, dimension (Q)
138*> The scalar factors of the elementary reflectors that define
139*> Q1.
140*> \endverbatim
141*>
142*> \param[out] WORK
143*> \verbatim
144*> WORK is REAL array, dimension (LWORK)
145*> \endverbatim
146*>
147*> \param[in] LWORK
148*> \verbatim
149*> LWORK is INTEGER
150*> The dimension of the array WORK. LWORK >= M-Q.
151*>
152*> If LWORK = -1, then a workspace query is assumed; the routine
153*> only calculates the optimal size of the WORK array, returns
154*> this value as the first entry of the WORK array, and no error
155*> message related to LWORK is issued by XERBLA.
156*> \endverbatim
157*>
158*> \param[out] INFO
159*> \verbatim
160*> INFO is INTEGER
161*> = 0: successful exit.
162*> < 0: if INFO = -i, the i-th argument had an illegal value.
163*> \endverbatim
164*>
165*
166* Authors:
167* ========
168*
169*> \author Univ. of Tennessee
170*> \author Univ. of California Berkeley
171*> \author Univ. of Colorado Denver
172*> \author NAG Ltd.
173*
174*> \ingroup unbdb3
175*
176*> \par Further Details:
177* =====================
178*>
179*> \verbatim
180*>
181*> The upper-bidiagonal blocks B11, B21 are represented implicitly by
182*> angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry
183*> in each bidiagonal band is a product of a sine or cosine of a THETA
184*> with a sine or cosine of a PHI. See [1] or SORCSD for details.
185*>
186*> P1, P2, and Q1 are represented as products of elementary reflectors.
187*> See SORCSD2BY1 for details on generating P1, P2, and Q1 using SORGQR
188*> and SORGLQ.
189*> \endverbatim
190*
191*> \par References:
192* ================
193*>
194*> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
195*> Algorithms, 50(1):33-65, 2009.
196*>
197* =====================================================================
198 SUBROUTINE sorbdb3( M, P, Q, X11, LDX11, X21, LDX21, THETA,
199 $ PHI,
200 $ TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO )
201*
202* -- LAPACK computational routine --
203* -- LAPACK is a software package provided by Univ. of Tennessee, --
204* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
205*
206* .. Scalar Arguments ..
207 INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21
208* ..
209* .. Array Arguments ..
210 REAL PHI(*), THETA(*)
211 REAL TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*),
212 $ x11(ldx11,*), x21(ldx21,*)
213* ..
214*
215* ====================================================================
216*
217* .. Local Scalars ..
218 REAL C, S
219 INTEGER CHILDINFO, I, ILARF, IORBDB5, LLARF, LORBDB5,
220 $ lworkmin, lworkopt
221 LOGICAL LQUERY
222* ..
223* .. External Subroutines ..
224 EXTERNAL slarf1f, slarfgp, sorbdb5, srot,
225 $ xerbla
226* ..
227* .. External Functions ..
228 REAL SNRM2
229 EXTERNAL SNRM2
230* ..
231* .. Intrinsic Function ..
232 INTRINSIC atan2, cos, max, sin, sqrt
233* ..
234* .. Executable Statements ..
235*
236* Test input arguments
237*
238 info = 0
239 lquery = lwork .EQ. -1
240*
241 IF( m .LT. 0 ) THEN
242 info = -1
243 ELSE IF( 2*p .LT. m .OR. p .GT. m ) THEN
244 info = -2
245 ELSE IF( q .LT. m-p .OR. m-q .LT. m-p ) THEN
246 info = -3
247 ELSE IF( ldx11 .LT. max( 1, p ) ) THEN
248 info = -5
249 ELSE IF( ldx21 .LT. max( 1, m-p ) ) THEN
250 info = -7
251 END IF
252*
253* Compute workspace
254*
255 IF( info .EQ. 0 ) THEN
256 ilarf = 2
257 llarf = max( p, m-p-1, q-1 )
258 iorbdb5 = 2
259 lorbdb5 = q-1
260 lworkopt = max( ilarf+llarf-1, iorbdb5+lorbdb5-1 )
261 lworkmin = lworkopt
262 work(1) = real( lworkopt )
263 IF( lwork .LT. lworkmin .AND. .NOT.lquery ) THEN
264 info = -14
265 END IF
266 END IF
267 IF( info .NE. 0 ) THEN
268 CALL xerbla( 'SORBDB3', -info )
269 RETURN
270 ELSE IF( lquery ) THEN
271 RETURN
272 END IF
273*
274* Reduce rows 1, ..., M-P of X11 and X21
275*
276 DO i = 1, m-p
277*
278 IF( i .GT. 1 ) THEN
279 CALL srot( q-i+1, x11(i-1,i), ldx11, x21(i,i), ldx11, c,
280 $ s )
281 END IF
282*
283 CALL slarfgp( q-i+1, x21(i,i), x21(i,i+1), ldx21, tauq1(i) )
284 s = x21(i,i)
285 CALL slarf1f( 'R', p-i+1, q-i+1, x21(i,i), ldx21, tauq1(i),
286 $ x11(i,i), ldx11, work(ilarf) )
287 CALL slarf1f( 'R', m-p-i, q-i+1, x21(i,i), ldx21, tauq1(i),
288 $ x21(i+1,i), ldx21, work(ilarf) )
289 c = sqrt( snrm2( p-i+1, x11(i,i), 1 )**2
290 $ + snrm2( m-p-i, x21(i+1,i), 1 )**2 )
291 theta(i) = atan2( s, c )
292*
293 CALL sorbdb5( p-i+1, m-p-i, q-i, x11(i,i), 1, x21(i+1,i), 1,
294 $ x11(i,i+1), ldx11, x21(i+1,i+1), ldx21,
295 $ work(iorbdb5), lorbdb5, childinfo )
296 CALL slarfgp( p-i+1, x11(i,i), x11(i+1,i), 1, taup1(i) )
297 IF( i .LT. m-p ) THEN
298 CALL slarfgp( m-p-i, x21(i+1,i), x21(i+2,i), 1,
299 $ taup2(i) )
300 phi(i) = atan2( x21(i+1,i), x11(i,i) )
301 c = cos( phi(i) )
302 s = sin( phi(i) )
303 CALL slarf1f( 'L', m-p-i, q-i, x21(i+1,i), 1, taup2(i),
304 $ x21(i+1,i+1), ldx21, work(ilarf) )
305 END IF
306 CALL slarf1f( 'L', p-i+1, q-i, x11(i,i), 1, taup1(i), x11(i,
307 $ i+1), ldx11, work(ilarf) )
308*
309 END DO
310*
311* Reduce the bottom-right portion of X11 to the identity matrix
312*
313 DO i = m-p + 1, q
314 CALL slarfgp( p-i+1, x11(i,i), x11(i+1,i), 1, taup1(i) )
315 CALL slarf1f( 'L', p-i+1, q-i, x11(i,i), 1, taup1(i), x11(i,
316 $ i+1), ldx11, work(ilarf) )
317 END DO
318*
319 RETURN
320*
321* End of SORBDB3
322*
323 END
324
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine slarfgp(n, alpha, x, incx, tau)
SLARFGP generates an elementary reflector (Householder matrix) with non-negative beta.
Definition slarfgp.f:102
subroutine srot(n, sx, incx, sy, incy, c, s)
SROT
Definition srot.f:92
subroutine sorbdb3(m, p, q, x11, ldx11, x21, ldx21, theta, phi, taup1, taup2, tauq1, work, lwork, info)
SORBDB3
Definition sorbdb3.f:201
subroutine sorbdb5(m1, m2, n, x1, incx1, x2, incx2, q1, ldq1, q2, ldq2, work, lwork, info)
SORBDB5
Definition sorbdb5.f:155
subroutine slarf1f(side, m, n, v, incv, tau, c, ldc, work)
SLARF1F applies an elementary reflector to a general rectangular
Definition slarf1f.f:123