LAPACK 3.12.0 LAPACK: Linear Algebra PACKage
Searching...
No Matches
cdrvhp.f
Go to the documentation of this file.
1*> \brief \b CDRVHP
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8* Definition:
9* ===========
10*
11* SUBROUTINE CDRVHP( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
12* A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK,
13* NOUT )
14*
15* .. Scalar Arguments ..
16* LOGICAL TSTERR
17* INTEGER NMAX, NN, NOUT, NRHS
18* REAL THRESH
19* ..
20* .. Array Arguments ..
21* LOGICAL DOTYPE( * )
22* INTEGER IWORK( * ), NVAL( * )
23* REAL RWORK( * )
24* COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ),
25* \$ WORK( * ), X( * ), XACT( * )
26* ..
27*
28*
29*> \par Purpose:
30* =============
31*>
32*> \verbatim
33*>
34*> CDRVHP tests the driver routines CHPSV and -SVX.
35*> \endverbatim
36*
37* Arguments:
38* ==========
39*
40*> \param[in] DOTYPE
41*> \verbatim
42*> DOTYPE is LOGICAL array, dimension (NTYPES)
43*> The matrix types to be used for testing. Matrices of type j
44*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
45*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
46*> \endverbatim
47*>
48*> \param[in] NN
49*> \verbatim
50*> NN is INTEGER
51*> The number of values of N contained in the vector NVAL.
52*> \endverbatim
53*>
54*> \param[in] NVAL
55*> \verbatim
56*> NVAL is INTEGER array, dimension (NN)
57*> The values of the matrix dimension N.
58*> \endverbatim
59*>
60*> \param[in] NRHS
61*> \verbatim
62*> NRHS is INTEGER
63*> The number of right hand side vectors to be generated for
64*> each linear system.
65*> \endverbatim
66*>
67*> \param[in] THRESH
68*> \verbatim
69*> THRESH is REAL
70*> The threshold value for the test ratios. A result is
71*> included in the output file if RESULT >= THRESH. To have
72*> every test ratio printed, use THRESH = 0.
73*> \endverbatim
74*>
75*> \param[in] TSTERR
76*> \verbatim
77*> TSTERR is LOGICAL
78*> Flag that indicates whether error exits are to be tested.
79*> \endverbatim
80*>
81*> \param[in] NMAX
82*> \verbatim
83*> NMAX is INTEGER
84*> The maximum value permitted for N, used in dimensioning the
85*> work arrays.
86*> \endverbatim
87*>
88*> \param[out] A
89*> \verbatim
90*> A is COMPLEX array, dimension
91*> (NMAX*(NMAX+1)/2)
92*> \endverbatim
93*>
94*> \param[out] AFAC
95*> \verbatim
96*> AFAC is COMPLEX array, dimension
97*> (NMAX*(NMAX+1)/2)
98*> \endverbatim
99*>
100*> \param[out] AINV
101*> \verbatim
102*> AINV is COMPLEX array, dimension
103*> (NMAX*(NMAX+1)/2)
104*> \endverbatim
105*>
106*> \param[out] B
107*> \verbatim
108*> B is COMPLEX array, dimension (NMAX*NRHS)
109*> \endverbatim
110*>
111*> \param[out] X
112*> \verbatim
113*> X is COMPLEX array, dimension (NMAX*NRHS)
114*> \endverbatim
115*>
116*> \param[out] XACT
117*> \verbatim
118*> XACT is COMPLEX array, dimension (NMAX*NRHS)
119*> \endverbatim
120*>
121*> \param[out] WORK
122*> \verbatim
123*> WORK is COMPLEX array, dimension
124*> (NMAX*max(2,NRHS))
125*> \endverbatim
126*>
127*> \param[out] RWORK
128*> \verbatim
129*> RWORK is REAL array, dimension (NMAX+2*NRHS)
130*> \endverbatim
131*>
132*> \param[out] IWORK
133*> \verbatim
134*> IWORK is INTEGER array, dimension (NMAX)
135*> \endverbatim
136*>
137*> \param[in] NOUT
138*> \verbatim
139*> NOUT is INTEGER
140*> The unit number for output.
141*> \endverbatim
142*
143* Authors:
144* ========
145*
146*> \author Univ. of Tennessee
147*> \author Univ. of California Berkeley
148*> \author Univ. of Colorado Denver
149*> \author NAG Ltd.
150*
151*> \ingroup complex_lin
152*
153* =====================================================================
154 SUBROUTINE cdrvhp( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
155 \$ A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK,
156 \$ NOUT )
157*
158* -- LAPACK test routine --
159* -- LAPACK is a software package provided by Univ. of Tennessee, --
160* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
161*
162* .. Scalar Arguments ..
163 LOGICAL TSTERR
164 INTEGER NMAX, NN, NOUT, NRHS
165 REAL THRESH
166* ..
167* .. Array Arguments ..
168 LOGICAL DOTYPE( * )
169 INTEGER IWORK( * ), NVAL( * )
170 REAL RWORK( * )
171 COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ),
172 \$ work( * ), x( * ), xact( * )
173* ..
174*
175* =====================================================================
176*
177* .. Parameters ..
178 REAL ONE, ZERO
179 PARAMETER ( ONE = 1.0e+0, zero = 0.0e+0 )
180 INTEGER NTYPES, NTESTS
181 parameter( ntypes = 10, ntests = 6 )
182 INTEGER NFACT
183 parameter( nfact = 2 )
184* ..
185* .. Local Scalars ..
186 LOGICAL ZEROT
187 CHARACTER DIST, FACT, PACKIT, TYPE, UPLO, XTYPE
188 CHARACTER*3 PATH
189 INTEGER I, I1, I2, IFACT, IMAT, IN, INFO, IOFF, IUPLO,
190 \$ izero, j, k, k1, kl, ku, lda, mode, n, nb,
191 \$ nbmin, nerrs, nfail, nimat, npp, nrun, nt
192 REAL AINVNM, ANORM, CNDNUM, RCOND, RCONDC
193* ..
194* .. Local Arrays ..
195 CHARACTER FACTS( NFACT )
196 INTEGER ISEED( 4 ), ISEEDY( 4 )
197 REAL RESULT( NTESTS )
198* ..
199* .. External Functions ..
200 REAL CLANHP, SGET06
201 EXTERNAL CLANHP, SGET06
202* ..
203* .. External Subroutines ..
204 EXTERNAL aladhd, alaerh, alasvm, ccopy, cerrvx, cget04,
207 \$ cppt05, xlaenv
208* ..
209* .. Scalars in Common ..
210 LOGICAL LERR, OK
211 CHARACTER*32 SRNAMT
212 INTEGER INFOT, NUNIT
213* ..
214* .. Common blocks ..
215 COMMON / infoc / infot, nunit, ok, lerr
216 COMMON / srnamc / srnamt
217* ..
218* .. Intrinsic Functions ..
219 INTRINSIC cmplx, max, min
220* ..
221* .. Data statements ..
222 DATA iseedy / 1988, 1989, 1990, 1991 /
223 DATA facts / 'F', 'N' /
224* ..
225* .. Executable Statements ..
226*
227* Initialize constants and the random number seed.
228*
229 path( 1: 1 ) = 'C'
230 path( 2: 3 ) = 'HP'
231 nrun = 0
232 nfail = 0
233 nerrs = 0
234 DO 10 i = 1, 4
235 iseed( i ) = iseedy( i )
236 10 CONTINUE
237*
238* Test the error exits
239*
240 IF( tsterr )
241 \$ CALL cerrvx( path, nout )
242 infot = 0
243*
244* Set the block size and minimum block size for testing.
245*
246 nb = 1
247 nbmin = 2
248 CALL xlaenv( 1, nb )
249 CALL xlaenv( 2, nbmin )
250*
251* Do for each value of N in NVAL
252*
253 DO 180 in = 1, nn
254 n = nval( in )
255 lda = max( n, 1 )
256 npp = n*( n+1 ) / 2
257 xtype = 'N'
258 nimat = ntypes
259 IF( n.LE.0 )
260 \$ nimat = 1
261*
262 DO 170 imat = 1, nimat
263*
264* Do the tests only if DOTYPE( IMAT ) is true.
265*
266 IF( .NOT.dotype( imat ) )
267 \$ GO TO 170
268*
269* Skip types 3, 4, 5, or 6 if the matrix size is too small.
270*
271 zerot = imat.GE.3 .AND. imat.LE.6
272 IF( zerot .AND. n.LT.imat-2 )
273 \$ GO TO 170
274*
275* Do first for UPLO = 'U', then for UPLO = 'L'
276*
277 DO 160 iuplo = 1, 2
278 IF( iuplo.EQ.1 ) THEN
279 uplo = 'U'
280 packit = 'C'
281 ELSE
282 uplo = 'L'
283 packit = 'R'
284 END IF
285*
286* Set up parameters with CLATB4 and generate a test matrix
287* with CLATMS.
288*
289 CALL clatb4( path, imat, n, n, TYPE, kl, ku, anorm, mode,
290 \$ cndnum, dist )
291*
292 srnamt = 'CLATMS'
293 CALL clatms( n, n, dist, iseed, TYPE, rwork, mode,
294 \$ cndnum, anorm, kl, ku, packit, a, lda, work,
295 \$ info )
296*
297* Check error code from CLATMS.
298*
299 IF( info.NE.0 ) THEN
300 CALL alaerh( path, 'CLATMS', info, 0, uplo, n, n, -1,
301 \$ -1, -1, imat, nfail, nerrs, nout )
302 GO TO 160
303 END IF
304*
305* For types 3-6, zero one or more rows and columns of the
306* matrix to test that INFO is returned correctly.
307*
308 IF( zerot ) THEN
309 IF( imat.EQ.3 ) THEN
310 izero = 1
311 ELSE IF( imat.EQ.4 ) THEN
312 izero = n
313 ELSE
314 izero = n / 2 + 1
315 END IF
316*
317 IF( imat.LT.6 ) THEN
318*
319* Set row and column IZERO to zero.
320*
321 IF( iuplo.EQ.1 ) THEN
322 ioff = ( izero-1 )*izero / 2
323 DO 20 i = 1, izero - 1
324 a( ioff+i ) = zero
325 20 CONTINUE
326 ioff = ioff + izero
327 DO 30 i = izero, n
328 a( ioff ) = zero
329 ioff = ioff + i
330 30 CONTINUE
331 ELSE
332 ioff = izero
333 DO 40 i = 1, izero - 1
334 a( ioff ) = zero
335 ioff = ioff + n - i
336 40 CONTINUE
337 ioff = ioff - izero
338 DO 50 i = izero, n
339 a( ioff+i ) = zero
340 50 CONTINUE
341 END IF
342 ELSE
343 ioff = 0
344 IF( iuplo.EQ.1 ) THEN
345*
346* Set the first IZERO rows and columns to zero.
347*
348 DO 70 j = 1, n
349 i2 = min( j, izero )
350 DO 60 i = 1, i2
351 a( ioff+i ) = zero
352 60 CONTINUE
353 ioff = ioff + j
354 70 CONTINUE
355 ELSE
356*
357* Set the last IZERO rows and columns to zero.
358*
359 DO 90 j = 1, n
360 i1 = max( j, izero )
361 DO 80 i = i1, n
362 a( ioff+i ) = zero
363 80 CONTINUE
364 ioff = ioff + n - j
365 90 CONTINUE
366 END IF
367 END IF
368 ELSE
369 izero = 0
370 END IF
371*
372* Set the imaginary part of the diagonals.
373*
374 IF( iuplo.EQ.1 ) THEN
375 CALL claipd( n, a, 2, 1 )
376 ELSE
377 CALL claipd( n, a, n, -1 )
378 END IF
379*
380 DO 150 ifact = 1, nfact
381*
382* Do first for FACT = 'F', then for other values.
383*
384 fact = facts( ifact )
385*
386* Compute the condition number for comparison with
387* the value returned by CHPSVX.
388*
389 IF( zerot ) THEN
390 IF( ifact.EQ.1 )
391 \$ GO TO 150
392 rcondc = zero
393*
394 ELSE IF( ifact.EQ.1 ) THEN
395*
396* Compute the 1-norm of A.
397*
398 anorm = clanhp( '1', uplo, n, a, rwork )
399*
400* Factor the matrix A.
401*
402 CALL ccopy( npp, a, 1, afac, 1 )
403 CALL chptrf( uplo, n, afac, iwork, info )
404*
405* Compute inv(A) and take its norm.
406*
407 CALL ccopy( npp, afac, 1, ainv, 1 )
408 CALL chptri( uplo, n, ainv, iwork, work, info )
409 ainvnm = clanhp( '1', uplo, n, ainv, rwork )
410*
411* Compute the 1-norm condition number of A.
412*
413 IF( anorm.LE.zero .OR. ainvnm.LE.zero ) THEN
414 rcondc = one
415 ELSE
416 rcondc = ( one / anorm ) / ainvnm
417 END IF
418 END IF
419*
420* Form an exact solution and set the right hand side.
421*
422 srnamt = 'CLARHS'
423 CALL clarhs( path, xtype, uplo, ' ', n, n, kl, ku,
424 \$ nrhs, a, lda, xact, lda, b, lda, iseed,
425 \$ info )
426 xtype = 'C'
427*
428* --- Test CHPSV ---
429*
430 IF( ifact.EQ.2 ) THEN
431 CALL ccopy( npp, a, 1, afac, 1 )
432 CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
433*
434* Factor the matrix and solve the system using CHPSV.
435*
436 srnamt = 'CHPSV '
437 CALL chpsv( uplo, n, nrhs, afac, iwork, x, lda,
438 \$ info )
439*
440* Adjust the expected value of INFO to account for
441* pivoting.
442*
443 k = izero
444 IF( k.GT.0 ) THEN
445 100 CONTINUE
446 IF( iwork( k ).LT.0 ) THEN
447 IF( iwork( k ).NE.-k ) THEN
448 k = -iwork( k )
449 GO TO 100
450 END IF
451 ELSE IF( iwork( k ).NE.k ) THEN
452 k = iwork( k )
453 GO TO 100
454 END IF
455 END IF
456*
457* Check error code from CHPSV .
458*
459 IF( info.NE.k ) THEN
460 CALL alaerh( path, 'CHPSV ', info, k, uplo, n,
461 \$ n, -1, -1, nrhs, imat, nfail,
462 \$ nerrs, nout )
463 GO TO 120
464 ELSE IF( info.NE.0 ) THEN
465 GO TO 120
466 END IF
467*
468* Reconstruct matrix from factors and compute
469* residual.
470*
471 CALL chpt01( uplo, n, a, afac, iwork, ainv, lda,
472 \$ rwork, result( 1 ) )
473*
474* Compute residual of the computed solution.
475*
476 CALL clacpy( 'Full', n, nrhs, b, lda, work, lda )
477 CALL cppt02( uplo, n, nrhs, a, x, lda, work, lda,
478 \$ rwork, result( 2 ) )
479*
480* Check solution from generated exact solution.
481*
482 CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
483 \$ result( 3 ) )
484 nt = 3
485*
486* Print information about the tests that did not pass
487* the threshold.
488*
489 DO 110 k = 1, nt
490 IF( result( k ).GE.thresh ) THEN
491 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
492 \$ CALL aladhd( nout, path )
493 WRITE( nout, fmt = 9999 )'CHPSV ', uplo, n,
494 \$ imat, k, result( k )
495 nfail = nfail + 1
496 END IF
497 110 CONTINUE
498 nrun = nrun + nt
499 120 CONTINUE
500 END IF
501*
502* --- Test CHPSVX ---
503*
504 IF( ifact.EQ.2 .AND. npp.GT.0 )
505 \$ CALL claset( 'Full', npp, 1, cmplx( zero ),
506 \$ cmplx( zero ), afac, npp )
507 CALL claset( 'Full', n, nrhs, cmplx( zero ),
508 \$ cmplx( zero ), x, lda )
509*
510* Solve the system and compute the condition number and
511* error bounds using CHPSVX.
512*
513 srnamt = 'CHPSVX'
514 CALL chpsvx( fact, uplo, n, nrhs, a, afac, iwork, b,
515 \$ lda, x, lda, rcond, rwork,
516 \$ rwork( nrhs+1 ), work, rwork( 2*nrhs+1 ),
517 \$ info )
518*
519* Adjust the expected value of INFO to account for
520* pivoting.
521*
522 k = izero
523 IF( k.GT.0 ) THEN
524 130 CONTINUE
525 IF( iwork( k ).LT.0 ) THEN
526 IF( iwork( k ).NE.-k ) THEN
527 k = -iwork( k )
528 GO TO 130
529 END IF
530 ELSE IF( iwork( k ).NE.k ) THEN
531 k = iwork( k )
532 GO TO 130
533 END IF
534 END IF
535*
536* Check the error code from CHPSVX.
537*
538 IF( info.NE.k ) THEN
539 CALL alaerh( path, 'CHPSVX', info, k, fact // uplo,
540 \$ n, n, -1, -1, nrhs, imat, nfail,
541 \$ nerrs, nout )
542 GO TO 150
543 END IF
544*
545 IF( info.EQ.0 ) THEN
546 IF( ifact.GE.2 ) THEN
547*
548* Reconstruct matrix from factors and compute
549* residual.
550*
551 CALL chpt01( uplo, n, a, afac, iwork, ainv, lda,
552 \$ rwork( 2*nrhs+1 ), result( 1 ) )
553 k1 = 1
554 ELSE
555 k1 = 2
556 END IF
557*
558* Compute residual of the computed solution.
559*
560 CALL clacpy( 'Full', n, nrhs, b, lda, work, lda )
561 CALL cppt02( uplo, n, nrhs, a, x, lda, work, lda,
562 \$ rwork( 2*nrhs+1 ), result( 2 ) )
563*
564* Check solution from generated exact solution.
565*
566 CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
567 \$ result( 3 ) )
568*
569* Check the error bounds from iterative refinement.
570*
571 CALL cppt05( uplo, n, nrhs, a, b, lda, x, lda,
572 \$ xact, lda, rwork, rwork( nrhs+1 ),
573 \$ result( 4 ) )
574 ELSE
575 k1 = 6
576 END IF
577*
578* Compare RCOND from CHPSVX with the computed value
579* in RCONDC.
580*
581 result( 6 ) = sget06( rcond, rcondc )
582*
583* Print information about the tests that did not pass
584* the threshold.
585*
586 DO 140 k = k1, 6
587 IF( result( k ).GE.thresh ) THEN
588 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
589 \$ CALL aladhd( nout, path )
590 WRITE( nout, fmt = 9998 )'CHPSVX', fact, uplo,
591 \$ n, imat, k, result( k )
592 nfail = nfail + 1
593 END IF
594 140 CONTINUE
595 nrun = nrun + 7 - k1
596*
597 150 CONTINUE
598*
599 160 CONTINUE
600 170 CONTINUE
601 180 CONTINUE
602*
603* Print a summary of the results.
604*
605 CALL alasvm( path, nout, nfail, nrun, nerrs )
606*
607 9999 FORMAT( 1x, a, ', UPLO=''', a1, ''', N =', i5, ', type ', i2,
608 \$ ', test ', i2, ', ratio =', g12.5 )
609 9998 FORMAT( 1x, a, ', FACT=''', a1, ''', UPLO=''', a1, ''', N =', i5,
610 \$ ', type ', i2, ', test ', i2, ', ratio =', g12.5 )
611 RETURN
612*
613* End of CDRVHP
614*
615 END
subroutine alasvm(type, nout, nfail, nrun, nerrs)
ALASVM
Definition alasvm.f:73
subroutine clarhs(path, xtype, uplo, trans, m, n, kl, ku, nrhs, a, lda, x, ldx, b, ldb, iseed, info)
CLARHS
Definition clarhs.f:208
subroutine xlaenv(ispec, nvalue)
XLAENV
Definition xlaenv.f:81
subroutine alaerh(path, subnam, info, infoe, opts, m, n, kl, ku, n5, imat, nfail, nerrs, nout)
ALAERH
Definition alaerh.f:147
subroutine cdrvhp(dotype, nn, nval, nrhs, thresh, tsterr, nmax, a, afac, ainv, b, x, xact, work, rwork, iwork, nout)
CDRVHP
Definition cdrvhp.f:157
subroutine cerrvx(path, nunit)
CERRVX
Definition cerrvx.f:55
subroutine cget04(n, nrhs, x, ldx, xact, ldxact, rcond, resid)
CGET04
Definition cget04.f:102
subroutine chpt01(uplo, n, a, afac, ipiv, c, ldc, rwork, resid)
CHPT01
Definition chpt01.f:113
subroutine claipd(n, a, inda, vinda)
CLAIPD
Definition claipd.f:83
subroutine clatb4(path, imat, m, n, type, kl, ku, anorm, mode, cndnum, dist)
CLATB4
Definition clatb4.f:121
subroutine clatms(m, n, dist, iseed, sym, d, mode, cond, dmax, kl, ku, pack, a, lda, work, info)
CLATMS
Definition clatms.f:332
subroutine cppt02(uplo, n, nrhs, a, x, ldx, b, ldb, rwork, resid)
CPPT02
Definition cppt02.f:123
subroutine cppt05(uplo, n, nrhs, ap, b, ldb, x, ldx, xact, ldxact, ferr, berr, reslts)
CPPT05
Definition cppt05.f:157
subroutine ccopy(n, cx, incx, cy, incy)
CCOPY
Definition ccopy.f:81
subroutine chpsv(uplo, n, nrhs, ap, ipiv, b, ldb, info)
CHPSV computes the solution to system of linear equations A * X = B for OTHER matrices
Definition chpsv.f:162
subroutine chpsvx(fact, uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx, rcond, ferr, berr, work, rwork, info)
CHPSVX computes the solution to system of linear equations A * X = B for OTHER matrices
Definition chpsvx.f:277
subroutine chptrf(uplo, n, ap, ipiv, info)
CHPTRF
Definition chptrf.f:159
subroutine chptri(uplo, n, ap, ipiv, work, info)
CHPTRI
Definition chptri.f:109
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:103
subroutine claset(uplo, m, n, alpha, beta, a, lda)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition claset.f:106