LAPACK  3.10.0
LAPACK: Linear Algebra PACKage
zchkhe_rk.f
Go to the documentation of this file.
1 *> \brief \b ZCHKHE_RK
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE ZCHKHE_RK( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
12 * THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X,
13 * XACT, WORK, RWORK, IWORK, NOUT )
14 *
15 * .. Scalar Arguments ..
16 * LOGICAL TSTERR
17 * INTEGER NMAX, NN, NNB, NNS, NOUT
18 * DOUBLE PRECISION THRESH
19 * ..
20 * .. Array Arguments ..
21 * LOGICAL DOTYPE( * )
22 * INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
23 * DOUBLE PRECISION RWORK( * )
24 * COMPLEX*16 A( * ), AFAC( * ), AINV( * ), B( * ), E( * ),
25 * $ WORK( * ), X( * ), XACT( * )
26 * ..
27 *
28 *
29 *> \par Purpose:
30 * =============
31 *>
32 *> \verbatim
33 *>
34 *> ZCHKHE_RK tests ZHETRF_RK, -TRI_3, -TRS_3,
35 *> and -CON_3.
36 *> \endverbatim
37 *
38 * Arguments:
39 * ==========
40 *
41 *> \param[in] DOTYPE
42 *> \verbatim
43 *> DOTYPE is LOGICAL array, dimension (NTYPES)
44 *> The matrix types to be used for testing. Matrices of type j
45 *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
46 *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
47 *> \endverbatim
48 *>
49 *> \param[in] NN
50 *> \verbatim
51 *> NN is INTEGER
52 *> The number of values of N contained in the vector NVAL.
53 *> \endverbatim
54 *>
55 *> \param[in] NVAL
56 *> \verbatim
57 *> NVAL is INTEGER array, dimension (NN)
58 *> The values of the matrix dimension N.
59 *> \endverbatim
60 *>
61 *> \param[in] NNB
62 *> \verbatim
63 *> NNB is INTEGER
64 *> The number of values of NB contained in the vector NBVAL.
65 *> \endverbatim
66 *>
67 *> \param[in] NBVAL
68 *> \verbatim
69 *> NBVAL is INTEGER array, dimension (NNB)
70 *> The values of the blocksize NB.
71 *> \endverbatim
72 *>
73 *> \param[in] NNS
74 *> \verbatim
75 *> NNS is INTEGER
76 *> The number of values of NRHS contained in the vector NSVAL.
77 *> \endverbatim
78 *>
79 *> \param[in] NSVAL
80 *> \verbatim
81 *> NSVAL is INTEGER array, dimension (NNS)
82 *> The values of the number of right hand sides NRHS.
83 *> \endverbatim
84 *>
85 *> \param[in] THRESH
86 *> \verbatim
87 *> THRESH is DOUBLE PRECISION
88 *> The threshold value for the test ratios. A result is
89 *> included in the output file if RESULT >= THRESH. To have
90 *> every test ratio printed, use THRESH = 0.
91 *> \endverbatim
92 *>
93 *> \param[in] TSTERR
94 *> \verbatim
95 *> TSTERR is LOGICAL
96 *> Flag that indicates whether error exits are to be tested.
97 *> \endverbatim
98 *>
99 *> \param[in] NMAX
100 *> \verbatim
101 *> NMAX is INTEGER
102 *> The maximum value permitted for N, used in dimensioning the
103 *> work arrays.
104 *> \endverbatim
105 *>
106 *> \param[out] A
107 *> \verbatim
108 *> A is CCOMPLEX*16 array, dimension (NMAX*NMAX)
109 *> \endverbatim
110 *>
111 *> \param[out] AFAC
112 *> \verbatim
113 *> AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)
114 *> \endverbatim
115 *>
116 *> \param[out] E
117 *> \verbatim
118 *> E is COMPLEX*16 array, dimension (NMAX)
119 *> \endverbatim
120 *>
121 *> \param[out] AINV
122 *> \verbatim
123 *> AINV is COMPLEX*16 array, dimension (NMAX*NMAX)
124 *> \endverbatim
125 *>
126 *> \param[out] B
127 *> \verbatim
128 *> B is CCOMPLEX*16 array, dimension (NMAX*NSMAX)
129 *> where NSMAX is the largest entry in NSVAL.
130 *> \endverbatim
131 *>
132 *> \param[out] X
133 *> \verbatim
134 *> X is COMPLEX*16 array, dimension (NMAX*NSMAX)
135 *> \endverbatim
136 *>
137 *> \param[out] XACT
138 *> \verbatim
139 *> XACT is COMPLEX*16 array, dimension (NMAX*NSMAX)
140 *> \endverbatim
141 *>
142 *> \param[out] WORK
143 *> \verbatim
144 *> WORK is COMPLEX*16 array, dimension (NMAX*max(3,NSMAX))
145 *> \endverbatim
146 *>
147 *> \param[out] RWORK
148 *> \verbatim
149 *> RWORK is DOUBLE PRECISION array, dimension (max(NMAX,2*NSMAX)
150 *> \endverbatim
151 *>
152 *> \param[out] IWORK
153 *> \verbatim
154 *> IWORK is INTEGER array, dimension (2*NMAX)
155 *> \endverbatim
156 *>
157 *> \param[in] NOUT
158 *> \verbatim
159 *> NOUT is INTEGER
160 *> The unit number for output.
161 *> \endverbatim
162 *
163 * Authors:
164 * ========
165 *
166 *> \author Univ. of Tennessee
167 *> \author Univ. of California Berkeley
168 *> \author Univ. of Colorado Denver
169 *> \author NAG Ltd.
170 *
171 *> \ingroup complex16_lin
172 *
173 * =====================================================================
174  SUBROUTINE zchkhe_rk( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
175  $ THRESH, TSTERR, NMAX, A, AFAC, E, AINV, B,
176  $ X, XACT, WORK, RWORK, IWORK, NOUT )
177 *
178 * -- LAPACK test routine --
179 * -- LAPACK is a software package provided by Univ. of Tennessee, --
180 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
181 *
182 * .. Scalar Arguments ..
183  LOGICAL TSTERR
184  INTEGER NMAX, NN, NNB, NNS, NOUT
185  DOUBLE PRECISION THRESH
186 * ..
187 * .. Array Arguments ..
188  LOGICAL DOTYPE( * )
189  INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
190  DOUBLE PRECISION RWORK( * )
191  COMPLEX*16 A( * ), AFAC( * ), AINV( * ), B( * ), E( * ),
192  $ work( * ), x( * ), xact( * )
193 * ..
194 *
195 * =====================================================================
196 *
197 * .. Parameters ..
198  DOUBLE PRECISION ZERO, ONE
199  PARAMETER ( ZERO = 0.0d+0, one = 1.0d+0 )
200  DOUBLE PRECISION ONEHALF
201  parameter( onehalf = 0.5d+0 )
202  DOUBLE PRECISION EIGHT, SEVTEN
203  parameter( eight = 8.0d+0, sevten = 17.0d+0 )
204  COMPLEX*16 CZERO
205  parameter( czero = ( 0.0d+0, 0.0d+0 ) )
206  INTEGER NTYPES
207  parameter( ntypes = 10 )
208  INTEGER NTESTS
209  parameter( ntests = 7 )
210 * ..
211 * .. Local Scalars ..
212  LOGICAL TRFCON, ZEROT
213  CHARACTER DIST, TYPE, UPLO, XTYPE
214  CHARACTER*3 PATH, MATPATH
215  INTEGER I, I1, I2, IMAT, IN, INB, INFO, IOFF, IRHS,
216  $ itemp, itemp2, iuplo, izero, j, k, kl, ku, lda,
217  $ lwork, mode, n, nb, nerrs, nfail, nimat, nrhs,
218  $ nrun, nt
219  DOUBLE PRECISION ALPHA, ANORM, CNDNUM, CONST, SING_MAX,
220  $ SING_MIN, RCOND, RCONDC, DTEMP
221 * ..
222 * .. Local Arrays ..
223  CHARACTER UPLOS( 2 )
224  INTEGER ISEED( 4 ), ISEEDY( 4 ), IDUMMY( 1 )
225  DOUBLE PRECISION RESULT( NTESTS )
226  COMPLEX*16 BLOCK( 2, 2 ), ZDUMMY( 1 )
227 * ..
228 * .. External Functions ..
229  DOUBLE PRECISION DGET06, ZLANGE, ZLANHE
230  EXTERNAL DGET06, ZLANGE, ZLANHE
231 * ..
232 * .. External Subroutines ..
233  EXTERNAL alaerh, alahd, alasum, zerrhe, zgesvd, zget04,
236  $ zhetrs_3, xlaenv
237 * ..
238 * .. Intrinsic Functions ..
239  INTRINSIC dconjg, max, min, sqrt
240 * ..
241 * .. Scalars in Common ..
242  LOGICAL LERR, OK
243  CHARACTER*32 SRNAMT
244  INTEGER INFOT, NUNIT
245 * ..
246 * .. Common blocks ..
247  COMMON / infoc / infot, nunit, ok, lerr
248  COMMON / srnamc / srnamt
249 * ..
250 * .. Data statements ..
251  DATA iseedy / 1988, 1989, 1990, 1991 /
252  DATA uplos / 'U', 'L' /
253 * ..
254 * .. Executable Statements ..
255 *
256 * Initialize constants and the random number seed.
257 *
258  alpha = ( one+sqrt( sevten ) ) / eight
259 *
260 * Test path
261 *
262  path( 1: 1 ) = 'Zomplex precision'
263  path( 2: 3 ) = 'HK'
264 *
265 * Path to generate matrices
266 *
267  matpath( 1: 1 ) = 'Zomplex precision'
268  matpath( 2: 3 ) = 'HE'
269 *
270  nrun = 0
271  nfail = 0
272  nerrs = 0
273  DO 10 i = 1, 4
274  iseed( i ) = iseedy( i )
275  10 CONTINUE
276 *
277 * Test the error exits
278 *
279  IF( tsterr )
280  $ CALL zerrhe( path, nout )
281  infot = 0
282 *
283 * Set the minimum block size for which the block routine should
284 * be used, which will be later returned by ILAENV
285 *
286  CALL xlaenv( 2, 2 )
287 *
288 * Do for each value of N in NVAL
289 *
290  DO 270 in = 1, nn
291  n = nval( in )
292  lda = max( n, 1 )
293  xtype = 'N'
294  nimat = ntypes
295  IF( n.LE.0 )
296  $ nimat = 1
297 *
298  izero = 0
299 *
300 * Do for each value of matrix type IMAT
301 *
302  DO 260 imat = 1, nimat
303 *
304 * Do the tests only if DOTYPE( IMAT ) is true.
305 *
306  IF( .NOT.dotype( imat ) )
307  $ GO TO 260
308 *
309 * Skip types 3, 4, 5, or 6 if the matrix size is too small.
310 *
311  zerot = imat.GE.3 .AND. imat.LE.6
312  IF( zerot .AND. n.LT.imat-2 )
313  $ GO TO 260
314 *
315 * Do first for UPLO = 'U', then for UPLO = 'L'
316 *
317  DO 250 iuplo = 1, 2
318  uplo = uplos( iuplo )
319 *
320 * Begin generate the test matrix A.
321 *
322 * Set up parameters with ZLATB4 for the matrix generator
323 * based on the type of matrix to be generated.
324 *
325  CALL zlatb4( matpath, imat, n, n, TYPE, kl, ku, anorm,
326  $ mode, cndnum, dist )
327 *
328 * Generate a matrix with ZLATMS.
329 *
330  srnamt = 'ZLATMS'
331  CALL zlatms( n, n, dist, iseed, TYPE, rwork, mode,
332  $ cndnum, anorm, kl, ku, uplo, a, lda,
333  $ work, info )
334 *
335 * Check error code from ZLATMS and handle error.
336 *
337  IF( info.NE.0 ) THEN
338  CALL alaerh( path, 'ZLATMS', info, 0, uplo, n, n,
339  $ -1, -1, -1, imat, nfail, nerrs, nout )
340 *
341 * Skip all tests for this generated matrix
342 *
343  GO TO 250
344  END IF
345 *
346 * For matrix types 3-6, zero one or more rows and
347 * columns of the matrix to test that INFO is returned
348 * correctly.
349 *
350  IF( zerot ) THEN
351  IF( imat.EQ.3 ) THEN
352  izero = 1
353  ELSE IF( imat.EQ.4 ) THEN
354  izero = n
355  ELSE
356  izero = n / 2 + 1
357  END IF
358 *
359  IF( imat.LT.6 ) THEN
360 *
361 * Set row and column IZERO to zero.
362 *
363  IF( iuplo.EQ.1 ) THEN
364  ioff = ( izero-1 )*lda
365  DO 20 i = 1, izero - 1
366  a( ioff+i ) = czero
367  20 CONTINUE
368  ioff = ioff + izero
369  DO 30 i = izero, n
370  a( ioff ) = czero
371  ioff = ioff + lda
372  30 CONTINUE
373  ELSE
374  ioff = izero
375  DO 40 i = 1, izero - 1
376  a( ioff ) = czero
377  ioff = ioff + lda
378  40 CONTINUE
379  ioff = ioff - izero
380  DO 50 i = izero, n
381  a( ioff+i ) = czero
382  50 CONTINUE
383  END IF
384  ELSE
385  IF( iuplo.EQ.1 ) THEN
386 *
387 * Set the first IZERO rows and columns to zero.
388 *
389  ioff = 0
390  DO 70 j = 1, n
391  i2 = min( j, izero )
392  DO 60 i = 1, i2
393  a( ioff+i ) = czero
394  60 CONTINUE
395  ioff = ioff + lda
396  70 CONTINUE
397  ELSE
398 *
399 * Set the last IZERO rows and columns to zero.
400 *
401  ioff = 0
402  DO 90 j = 1, n
403  i1 = max( j, izero )
404  DO 80 i = i1, n
405  a( ioff+i ) = czero
406  80 CONTINUE
407  ioff = ioff + lda
408  90 CONTINUE
409  END IF
410  END IF
411  ELSE
412  izero = 0
413  END IF
414 *
415 * End generate the test matrix A.
416 *
417 *
418 * Do for each value of NB in NBVAL
419 *
420  DO 240 inb = 1, nnb
421 *
422 * Set the optimal blocksize, which will be later
423 * returned by ILAENV.
424 *
425  nb = nbval( inb )
426  CALL xlaenv( 1, nb )
427 *
428 * Copy the test matrix A into matrix AFAC which
429 * will be factorized in place. This is needed to
430 * preserve the test matrix A for subsequent tests.
431 *
432  CALL zlacpy( uplo, n, n, a, lda, afac, lda )
433 *
434 * Compute the L*D*L**T or U*D*U**T factorization of the
435 * matrix. IWORK stores details of the interchanges and
436 * the block structure of D. AINV is a work array for
437 * block factorization, LWORK is the length of AINV.
438 *
439  lwork = max( 2, nb )*lda
440  srnamt = 'ZHETRF_RK'
441  CALL zhetrf_rk( uplo, n, afac, lda, e, iwork, ainv,
442  $ lwork, info )
443 *
444 * Adjust the expected value of INFO to account for
445 * pivoting.
446 *
447  k = izero
448  IF( k.GT.0 ) THEN
449  100 CONTINUE
450  IF( iwork( k ).LT.0 ) THEN
451  IF( iwork( k ).NE.-k ) THEN
452  k = -iwork( k )
453  GO TO 100
454  END IF
455  ELSE IF( iwork( k ).NE.k ) THEN
456  k = iwork( k )
457  GO TO 100
458  END IF
459  END IF
460 *
461 * Check error code from ZHETRF_RK and handle error.
462 *
463  IF( info.NE.k)
464  $ CALL alaerh( path, 'ZHETRF_RK', info, k,
465  $ uplo, n, n, -1, -1, nb, imat,
466  $ nfail, nerrs, nout )
467 *
468 * Set the condition estimate flag if the INFO is not 0.
469 *
470  IF( info.NE.0 ) THEN
471  trfcon = .true.
472  ELSE
473  trfcon = .false.
474  END IF
475 *
476 *+ TEST 1
477 * Reconstruct matrix from factors and compute residual.
478 *
479  CALL zhet01_3( uplo, n, a, lda, afac, lda, e, iwork,
480  $ ainv, lda, rwork, result( 1 ) )
481  nt = 1
482 *
483 *+ TEST 2
484 * Form the inverse and compute the residual,
485 * if the factorization was competed without INFO > 0
486 * (i.e. there is no zero rows and columns).
487 * Do it only for the first block size.
488 *
489  IF( inb.EQ.1 .AND. .NOT.trfcon ) THEN
490  CALL zlacpy( uplo, n, n, afac, lda, ainv, lda )
491  srnamt = 'ZHETRI_3'
492 *
493 * Another reason that we need to compute the inverse
494 * is that ZPOT03 produces RCONDC which is used later
495 * in TEST6 and TEST7.
496 *
497  lwork = (n+nb+1)*(nb+3)
498  CALL zhetri_3( uplo, n, ainv, lda, e, iwork, work,
499  $ lwork, info )
500 *
501 * Check error code from ZHETRI_3 and handle error.
502 *
503  IF( info.NE.0 )
504  $ CALL alaerh( path, 'ZHETRI_3', info, -1,
505  $ uplo, n, n, -1, -1, -1, imat,
506  $ nfail, nerrs, nout )
507 *
508 * Compute the residual for a Hermitian matrix times
509 * its inverse.
510 *
511  CALL zpot03( uplo, n, a, lda, ainv, lda, work, lda,
512  $ rwork, rcondc, result( 2 ) )
513  nt = 2
514  END IF
515 *
516 * Print information about the tests that did not pass
517 * the threshold.
518 *
519  DO 110 k = 1, nt
520  IF( result( k ).GE.thresh ) THEN
521  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
522  $ CALL alahd( nout, path )
523  WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
524  $ result( k )
525  nfail = nfail + 1
526  END IF
527  110 CONTINUE
528  nrun = nrun + nt
529 *
530 *+ TEST 3
531 * Compute largest element in U or L
532 *
533  result( 3 ) = zero
534  dtemp = zero
535 *
536  const = ( ( alpha**2-one ) / ( alpha**2-onehalf ) ) /
537  $ ( one-alpha )
538 *
539  IF( iuplo.EQ.1 ) THEN
540 *
541 * Compute largest element in U
542 *
543  k = n
544  120 CONTINUE
545  IF( k.LE.1 )
546  $ GO TO 130
547 *
548  IF( iwork( k ).GT.zero ) THEN
549 *
550 * Get max absolute value from elements
551 * in column k in U
552 *
553  dtemp = zlange( 'M', k-1, 1,
554  $ afac( ( k-1 )*lda+1 ), lda, rwork )
555  ELSE
556 *
557 * Get max absolute value from elements
558 * in columns k and k-1 in U
559 *
560  dtemp = zlange( 'M', k-2, 2,
561  $ afac( ( k-2 )*lda+1 ), lda, rwork )
562  k = k - 1
563 *
564  END IF
565 *
566 * DTEMP should be bounded by CONST
567 *
568  dtemp = dtemp - const + thresh
569  IF( dtemp.GT.result( 3 ) )
570  $ result( 3 ) = dtemp
571 *
572  k = k - 1
573 *
574  GO TO 120
575  130 CONTINUE
576 *
577  ELSE
578 *
579 * Compute largest element in L
580 *
581  k = 1
582  140 CONTINUE
583  IF( k.GE.n )
584  $ GO TO 150
585 *
586  IF( iwork( k ).GT.zero ) THEN
587 *
588 * Get max absolute value from elements
589 * in column k in L
590 *
591  dtemp = zlange( 'M', n-k, 1,
592  $ afac( ( k-1 )*lda+k+1 ), lda, rwork )
593  ELSE
594 *
595 * Get max absolute value from elements
596 * in columns k and k+1 in L
597 *
598  dtemp = zlange( 'M', n-k-1, 2,
599  $ afac( ( k-1 )*lda+k+2 ), lda, rwork )
600  k = k + 1
601 *
602  END IF
603 *
604 * DTEMP should be bounded by CONST
605 *
606  dtemp = dtemp - const + thresh
607  IF( dtemp.GT.result( 3 ) )
608  $ result( 3 ) = dtemp
609 *
610  k = k + 1
611 *
612  GO TO 140
613  150 CONTINUE
614  END IF
615 *
616 *
617 *+ TEST 4
618 * Compute largest 2-Norm (condition number)
619 * of 2-by-2 diag blocks
620 *
621  result( 4 ) = zero
622  dtemp = zero
623 *
624  const = ( ( alpha**2-one ) / ( alpha**2-onehalf ) )*
625  $ ( ( one + alpha ) / ( one - alpha ) )
626  CALL zlacpy( uplo, n, n, afac, lda, ainv, lda )
627 *
628  IF( iuplo.EQ.1 ) THEN
629 *
630 * Loop backward for UPLO = 'U'
631 *
632  k = n
633  160 CONTINUE
634  IF( k.LE.1 )
635  $ GO TO 170
636 *
637  IF( iwork( k ).LT.zero ) THEN
638 *
639 * Get the two singular values
640 * (real and non-negative) of a 2-by-2 block,
641 * store them in RWORK array
642 *
643  block( 1, 1 ) = afac( ( k-2 )*lda+k-1 )
644  block( 1, 2 ) = e( k )
645  block( 2, 1 ) = dconjg( block( 1, 2 ) )
646  block( 2, 2 ) = afac( (k-1)*lda+k )
647 *
648  CALL zgesvd( 'N', 'N', 2, 2, block, 2, rwork,
649  $ zdummy, 1, zdummy, 1,
650  $ work, 6, rwork( 3 ), info )
651 *
652 *
653  sing_max = rwork( 1 )
654  sing_min = rwork( 2 )
655 *
656  dtemp = sing_max / sing_min
657 *
658 * DTEMP should be bounded by CONST
659 *
660  dtemp = dtemp - const + thresh
661  IF( dtemp.GT.result( 4 ) )
662  $ result( 4 ) = dtemp
663  k = k - 1
664 *
665  END IF
666 *
667  k = k - 1
668 *
669  GO TO 160
670  170 CONTINUE
671 *
672  ELSE
673 *
674 * Loop forward for UPLO = 'L'
675 *
676  k = 1
677  180 CONTINUE
678  IF( k.GE.n )
679  $ GO TO 190
680 *
681  IF( iwork( k ).LT.zero ) THEN
682 *
683 * Get the two singular values
684 * (real and non-negative) of a 2-by-2 block,
685 * store them in RWORK array
686 *
687  block( 1, 1 ) = afac( ( k-1 )*lda+k )
688  block( 2, 1 ) = e( k )
689  block( 1, 2 ) = dconjg( block( 2, 1 ) )
690  block( 2, 2 ) = afac( k*lda+k+1 )
691 *
692  CALL zgesvd( 'N', 'N', 2, 2, block, 2, rwork,
693  $ zdummy, 1, zdummy, 1,
694  $ work, 6, rwork(3), info )
695 *
696  sing_max = rwork( 1 )
697  sing_min = rwork( 2 )
698 *
699  dtemp = sing_max / sing_min
700 *
701 * DTEMP should be bounded by CONST
702 *
703  dtemp = dtemp - const + thresh
704  IF( dtemp.GT.result( 4 ) )
705  $ result( 4 ) = dtemp
706  k = k + 1
707 *
708  END IF
709 *
710  k = k + 1
711 *
712  GO TO 180
713  190 CONTINUE
714  END IF
715 *
716 * Print information about the tests that did not pass
717 * the threshold.
718 *
719  DO 200 k = 3, 4
720  IF( result( k ).GE.thresh ) THEN
721  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
722  $ CALL alahd( nout, path )
723  WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
724  $ result( k )
725  nfail = nfail + 1
726  END IF
727  200 CONTINUE
728  nrun = nrun + 2
729 *
730 * Skip the other tests if this is not the first block
731 * size.
732 *
733  IF( inb.GT.1 )
734  $ GO TO 240
735 *
736 * Do only the condition estimate if INFO is not 0.
737 *
738  IF( trfcon ) THEN
739  rcondc = zero
740  GO TO 230
741  END IF
742 *
743 * Do for each value of NRHS in NSVAL.
744 *
745  DO 220 irhs = 1, nns
746  nrhs = nsval( irhs )
747 *
748 * Begin loop over NRHS values
749 *
750 *
751 *+ TEST 5 ( Using TRS_3)
752 * Solve and compute residual for A * X = B.
753 *
754 * Choose a set of NRHS random solution vectors
755 * stored in XACT and set up the right hand side B
756 *
757  srnamt = 'ZLARHS'
758  CALL zlarhs( matpath, xtype, uplo, ' ', n, n,
759  $ kl, ku, nrhs, a, lda, xact, lda,
760  $ b, lda, iseed, info )
761  CALL zlacpy( 'Full', n, nrhs, b, lda, x, lda )
762 *
763  srnamt = 'ZHETRS_3'
764  CALL zhetrs_3( uplo, n, nrhs, afac, lda, e, iwork,
765  $ x, lda, info )
766 *
767 * Check error code from ZHETRS_3 and handle error.
768 *
769  IF( info.NE.0 )
770  $ CALL alaerh( path, 'ZHETRS_3', info, 0,
771  $ uplo, n, n, -1, -1, nrhs, imat,
772  $ nfail, nerrs, nout )
773 *
774  CALL zlacpy( 'Full', n, nrhs, b, lda, work, lda )
775 *
776 * Compute the residual for the solution
777 *
778  CALL zpot02( uplo, n, nrhs, a, lda, x, lda, work,
779  $ lda, rwork, result( 5 ) )
780 *
781 *+ TEST 6
782 * Check solution from generated exact solution.
783 *
784  CALL zget04( n, nrhs, x, lda, xact, lda, rcondc,
785  $ result( 6 ) )
786 *
787 * Print information about the tests that did not pass
788 * the threshold.
789 *
790  DO 210 k = 5, 6
791  IF( result( k ).GE.thresh ) THEN
792  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
793  $ CALL alahd( nout, path )
794  WRITE( nout, fmt = 9998 )uplo, n, nrhs,
795  $ imat, k, result( k )
796  nfail = nfail + 1
797  END IF
798  210 CONTINUE
799  nrun = nrun + 2
800 *
801 * End do for each value of NRHS in NSVAL.
802 *
803  220 CONTINUE
804 *
805 *+ TEST 7
806 * Get an estimate of RCOND = 1/CNDNUM.
807 *
808  230 CONTINUE
809  anorm = zlanhe( '1', uplo, n, a, lda, rwork )
810  srnamt = 'ZHECON_3'
811  CALL zhecon_3( uplo, n, afac, lda, e, iwork, anorm,
812  $ rcond, work, info )
813 *
814 * Check error code from ZHECON_3 and handle error.
815 *
816  IF( info.NE.0 )
817  $ CALL alaerh( path, 'ZHECON_3', info, 0,
818  $ uplo, n, n, -1, -1, -1, imat,
819  $ nfail, nerrs, nout )
820 *
821 * Compute the test ratio to compare values of RCOND
822 *
823  result( 7 ) = dget06( rcond, rcondc )
824 *
825 * Print information about the tests that did not pass
826 * the threshold.
827 *
828  IF( result( 7 ).GE.thresh ) THEN
829  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
830  $ CALL alahd( nout, path )
831  WRITE( nout, fmt = 9997 )uplo, n, imat, 7,
832  $ result( 7 )
833  nfail = nfail + 1
834  END IF
835  nrun = nrun + 1
836  240 CONTINUE
837 *
838  250 CONTINUE
839  260 CONTINUE
840  270 CONTINUE
841 *
842 * Print a summary of the results.
843 *
844  CALL alasum( path, nout, nfail, nrun, nerrs )
845 *
846  9999 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NB =', i4, ', type ',
847  $ i2, ', test ', i2, ', ratio =', g12.5 )
848  9998 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NRHS=', i3, ', type ',
849  $ i2, ', test ', i2, ', ratio =', g12.5 )
850  9997 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ',', 10x, ' type ', i2,
851  $ ', test ', i2, ', ratio =', g12.5 )
852  RETURN
853 *
854 * End of ZCHKHE_RK
855 *
856  END
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:73
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:81
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:107
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:147
subroutine zlarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
ZLARHS
Definition: zlarhs.f:208
subroutine zpot03(UPLO, N, A, LDA, AINV, LDAINV, WORK, LDWORK, RWORK, RCOND, RESID)
ZPOT03
Definition: zpot03.f:126
subroutine zerrhe(PATH, NUNIT)
ZERRHE
Definition: zerrhe.f:55
subroutine zget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
ZGET04
Definition: zget04.f:102
subroutine zpot02(UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
ZPOT02
Definition: zpot02.f:127
subroutine zchkhe_rk(DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL, THRESH, TSTERR, NMAX, A, AFAC, E, AINV, B, X, XACT, WORK, RWORK, IWORK, NOUT)
ZCHKHE_RK
Definition: zchkhe_rk.f:177
subroutine zhet01_3(UPLO, N, A, LDA, AFAC, LDAFAC, E, IPIV, C, LDC, RWORK, RESID)
ZHET01_3
Definition: zhet01_3.f:141
subroutine zlatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
ZLATB4
Definition: zlatb4.f:121
subroutine zlatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
ZLATMS
Definition: zlatms.f:332
subroutine zgesvd(JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK, LWORK, RWORK, INFO)
ZGESVD computes the singular value decomposition (SVD) for GE matrices
Definition: zgesvd.f:214
subroutine zhetri_3(UPLO, N, A, LDA, E, IPIV, WORK, LWORK, INFO)
ZHETRI_3
Definition: zhetri_3.f:170
subroutine zhecon_3(UPLO, N, A, LDA, E, IPIV, ANORM, RCOND, WORK, INFO)
ZHECON_3
Definition: zhecon_3.f:166
subroutine zhetrf_rk(UPLO, N, A, LDA, E, IPIV, WORK, LWORK, INFO)
ZHETRF_RK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bunch...
Definition: zhetrf_rk.f:259
subroutine zhetrs_3(UPLO, N, NRHS, A, LDA, E, IPIV, B, LDB, INFO)
ZHETRS_3
Definition: zhetrs_3.f:165
subroutine zlacpy(UPLO, M, N, A, LDA, B, LDB)
ZLACPY copies all or part of one two-dimensional array to another.
Definition: zlacpy.f:103