LAPACK 3.12.0 LAPACK: Linear Algebra PACKage
Searching...
No Matches

## ◆ cdrvhe_rk()

 subroutine cdrvhe_rk ( logical, dimension( * ) dotype, integer nn, integer, dimension( * ) nval, integer nrhs, real thresh, logical tsterr, integer nmax, complex, dimension( * ) a, complex, dimension( * ) afac, complex, dimension( * ) e, complex, dimension( * ) ainv, complex, dimension( * ) b, complex, dimension( * ) x, complex, dimension( * ) xact, complex, dimension( * ) work, real, dimension( * ) rwork, integer, dimension( * ) iwork, integer nout )

CDRVHE_RK

Purpose:
` CDRVHE_RK tests the driver routines CHESV_RK.`
Parameters
 [in] DOTYPE ``` DOTYPE is LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.``` [in] NN ``` NN is INTEGER The number of values of N contained in the vector NVAL.``` [in] NVAL ``` NVAL is INTEGER array, dimension (NN) The values of the matrix dimension N.``` [in] NRHS ``` NRHS is INTEGER The number of right hand side vectors to be generated for each linear system.``` [in] THRESH ``` THRESH is REAL The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0.``` [in] TSTERR ``` TSTERR is LOGICAL Flag that indicates whether error exits are to be tested.``` [in] NMAX ``` NMAX is INTEGER The maximum value permitted for N, used in dimensioning the work arrays.``` [out] A ` A is COMPLEX array, dimension (NMAX*NMAX)` [out] AFAC ` AFAC is COMPLEX array, dimension (NMAX*NMAX)` [out] E ` E is COMPLEX array, dimension (NMAX)` [out] AINV ` AINV is COMPLEX array, dimension (NMAX*NMAX)` [out] B ` B is COMPLEX array, dimension (NMAX*NRHS)` [out] X ` X is COMPLEX array, dimension (NMAX*NRHS)` [out] XACT ` XACT is COMPLEX array, dimension (NMAX*NRHS)` [out] WORK ` WORK is COMPLEX array, dimension (NMAX*max(2,NRHS))` [out] RWORK ` RWORK is REAL array, dimension (NMAX+2*NRHS)` [out] IWORK ` IWORK is INTEGER array, dimension (NMAX)` [in] NOUT ``` NOUT is INTEGER The unit number for output.```

Definition at line 155 of file cdrvhe_rk.f.

158*
159* -- LAPACK test routine --
160* -- LAPACK is a software package provided by Univ. of Tennessee, --
161* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
162*
163* .. Scalar Arguments ..
164 LOGICAL TSTERR
165 INTEGER NMAX, NN, NOUT, NRHS
166 REAL THRESH
167* ..
168* .. Array Arguments ..
169 LOGICAL DOTYPE( * )
170 INTEGER IWORK( * ), NVAL( * )
171 REAL RWORK( * )
172 COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ), E( * ),
173 \$ WORK( * ), X( * ), XACT( * )
174* ..
175*
176* =====================================================================
177*
178* .. Parameters ..
179 REAL ONE, ZERO
180 parameter( one = 1.0e+0, zero = 0.0e+0 )
181 INTEGER NTYPES, NTESTS
182 parameter( ntypes = 10, ntests = 3 )
183 INTEGER NFACT
184 parameter( nfact = 2 )
185* ..
186* .. Local Scalars ..
187 LOGICAL ZEROT
188 CHARACTER DIST, FACT, TYPE, UPLO, XTYPE
189 CHARACTER*3 MATPATH, PATH
190 INTEGER I, I1, I2, IFACT, IMAT, IN, INFO, IOFF, IUPLO,
191 \$ IZERO, J, K, KL, KU, LDA, LWORK, MODE, N,
192 \$ NB, NBMIN, NERRS, NFAIL, NIMAT, NRUN, NT
193 REAL AINVNM, ANORM, CNDNUM, RCONDC
194* ..
195* .. Local Arrays ..
196 CHARACTER FACTS( NFACT ), UPLOS( 2 )
197 INTEGER ISEED( 4 ), ISEEDY( 4 )
198 REAL RESULT( NTESTS )
199
200* ..
201* .. External Functions ..
202 REAL CLANHE
203 EXTERNAL clanhe
204* ..
205* .. External Subroutines ..
206 EXTERNAL aladhd, alaerh, alasvm, xlaenv, cerrvx, cget04,
209* ..
210* .. Scalars in Common ..
211 LOGICAL LERR, OK
212 CHARACTER*32 SRNAMT
213 INTEGER INFOT, NUNIT
214* ..
215* .. Common blocks ..
216 COMMON / infoc / infot, nunit, ok, lerr
217 COMMON / srnamc / srnamt
218* ..
219* .. Intrinsic Functions ..
220 INTRINSIC max, min
221* ..
222* .. Data statements ..
223 DATA iseedy / 1988, 1989, 1990, 1991 /
224 DATA uplos / 'U', 'L' / , facts / 'F', 'N' /
225* ..
226* .. Executable Statements ..
227*
228* Initialize constants and the random number seed.
229*
230* Test path
231*
232 path( 1: 1 ) = 'Complex precision'
233 path( 2: 3 ) = 'HK'
234*
235* Path to generate matrices
236*
237 matpath( 1: 1 ) = 'Complex precision'
238 matpath( 2: 3 ) = 'HE'
239*
240 nrun = 0
241 nfail = 0
242 nerrs = 0
243 DO 10 i = 1, 4
244 iseed( i ) = iseedy( i )
245 10 CONTINUE
246 lwork = max( 2*nmax, nmax*nrhs )
247*
248* Test the error exits
249*
250 IF( tsterr )
251 \$ CALL cerrvx( path, nout )
252 infot = 0
253*
254* Set the block size and minimum block size for which the block
255* routine should be used, which will be later returned by ILAENV.
256*
257 nb = 1
258 nbmin = 2
259 CALL xlaenv( 1, nb )
260 CALL xlaenv( 2, nbmin )
261*
262* Do for each value of N in NVAL
263*
264 DO 180 in = 1, nn
265 n = nval( in )
266 lda = max( n, 1 )
267 xtype = 'N'
268 nimat = ntypes
269 IF( n.LE.0 )
270 \$ nimat = 1
271*
272 DO 170 imat = 1, nimat
273*
274* Do the tests only if DOTYPE( IMAT ) is true.
275*
276 IF( .NOT.dotype( imat ) )
277 \$ GO TO 170
278*
279* Skip types 3, 4, 5, or 6 if the matrix size is too small.
280*
281 zerot = imat.GE.3 .AND. imat.LE.6
282 IF( zerot .AND. n.LT.imat-2 )
283 \$ GO TO 170
284*
285* Do first for UPLO = 'U', then for UPLO = 'L'
286*
287 DO 160 iuplo = 1, 2
288 uplo = uplos( iuplo )
289*
290* Begin generate the test matrix A.
291*
292* Set up parameters with CLATB4 for the matrix generator
293* based on the type of matrix to be generated.
294*
295 CALL clatb4( matpath, imat, n, n, TYPE, KL, KU, ANORM,
296 \$ MODE, CNDNUM, DIST )
297*
298* Generate a matrix with CLATMS.
299*
300 srnamt = 'CLATMS'
301 CALL clatms( n, n, dist, iseed, TYPE, RWORK, MODE,
302 \$ CNDNUM, ANORM, KL, KU, UPLO, A, LDA,
303 \$ WORK, INFO )
304*
305* Check error code from CLATMS and handle error.
306*
307 IF( info.NE.0 ) THEN
308 CALL alaerh( path, 'CLATMS', info, 0, uplo, n, n,
309 \$ -1, -1, -1, imat, nfail, nerrs, nout )
310 GO TO 160
311 END IF
312*
313* For types 3-6, zero one or more rows and columns of
314* the matrix to test that INFO is returned correctly.
315*
316 IF( zerot ) THEN
317 IF( imat.EQ.3 ) THEN
318 izero = 1
319 ELSE IF( imat.EQ.4 ) THEN
320 izero = n
321 ELSE
322 izero = n / 2 + 1
323 END IF
324*
325 IF( imat.LT.6 ) THEN
326*
327* Set row and column IZERO to zero.
328*
329 IF( iuplo.EQ.1 ) THEN
330 ioff = ( izero-1 )*lda
331 DO 20 i = 1, izero - 1
332 a( ioff+i ) = zero
333 20 CONTINUE
334 ioff = ioff + izero
335 DO 30 i = izero, n
336 a( ioff ) = zero
337 ioff = ioff + lda
338 30 CONTINUE
339 ELSE
340 ioff = izero
341 DO 40 i = 1, izero - 1
342 a( ioff ) = zero
343 ioff = ioff + lda
344 40 CONTINUE
345 ioff = ioff - izero
346 DO 50 i = izero, n
347 a( ioff+i ) = zero
348 50 CONTINUE
349 END IF
350 ELSE
351 IF( iuplo.EQ.1 ) THEN
352*
353* Set the first IZERO rows and columns to zero.
354*
355 ioff = 0
356 DO 70 j = 1, n
357 i2 = min( j, izero )
358 DO 60 i = 1, i2
359 a( ioff+i ) = zero
360 60 CONTINUE
361 ioff = ioff + lda
362 70 CONTINUE
363 ELSE
364*
365* Set the first IZERO rows and columns to zero.
366*
367 ioff = 0
368 DO 90 j = 1, n
369 i1 = max( j, izero )
370 DO 80 i = i1, n
371 a( ioff+i ) = zero
372 80 CONTINUE
373 ioff = ioff + lda
374 90 CONTINUE
375 END IF
376 END IF
377 ELSE
378 izero = 0
379 END IF
380*
381* End generate the test matrix A.
382*
383*
384 DO 150 ifact = 1, nfact
385*
386* Do first for FACT = 'F', then for other values.
387*
388 fact = facts( ifact )
389*
390* Compute the condition number
391*
392 IF( zerot ) THEN
393 IF( ifact.EQ.1 )
394 \$ GO TO 150
395 rcondc = zero
396*
397 ELSE IF( ifact.EQ.1 ) THEN
398*
399* Compute the 1-norm of A.
400*
401 anorm = clanhe( '1', uplo, n, a, lda, rwork )
402*
403* Factor the matrix A.
404*
405 CALL clacpy( uplo, n, n, a, lda, afac, lda )
406 CALL chetrf_rk( uplo, n, afac, lda, e, iwork, work,
407 \$ lwork, info )
408*
409* Compute inv(A) and take its norm.
410*
411 CALL clacpy( uplo, n, n, afac, lda, ainv, lda )
412 lwork = (n+nb+1)*(nb+3)
413*
414* We need to compute the inverse to compute
415* RCONDC that is used later in TEST3.
416*
417 CALL csytri_3( uplo, n, ainv, lda, e, iwork,
418 \$ work, lwork, info )
419 ainvnm = clanhe( '1', uplo, n, ainv, lda, rwork )
420*
421* Compute the 1-norm condition number of A.
422*
423 IF( anorm.LE.zero .OR. ainvnm.LE.zero ) THEN
424 rcondc = one
425 ELSE
426 rcondc = ( one / anorm ) / ainvnm
427 END IF
428 END IF
429*
430* Form an exact solution and set the right hand side.
431*
432 srnamt = 'CLARHS'
433 CALL clarhs( matpath, xtype, uplo, ' ', n, n, kl, ku,
434 \$ nrhs, a, lda, xact, lda, b, lda, iseed,
435 \$ info )
436 xtype = 'C'
437*
438* --- Test CHESV_RK ---
439*
440 IF( ifact.EQ.2 ) THEN
441 CALL clacpy( uplo, n, n, a, lda, afac, lda )
442 CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
443*
444* Factor the matrix and solve the system using
445* CHESV_RK.
446*
447 srnamt = 'CHESV_RK'
448 CALL chesv_rk( uplo, n, nrhs, afac, lda, e, iwork,
449 \$ x, lda, work, lwork, info )
450*
451* Adjust the expected value of INFO to account for
452* pivoting.
453*
454 k = izero
455 IF( k.GT.0 ) THEN
456 100 CONTINUE
457 IF( iwork( k ).LT.0 ) THEN
458 IF( iwork( k ).NE.-k ) THEN
459 k = -iwork( k )
460 GO TO 100
461 END IF
462 ELSE IF( iwork( k ).NE.k ) THEN
463 k = iwork( k )
464 GO TO 100
465 END IF
466 END IF
467*
468* Check error code from CHESV_RK and handle error.
469*
470 IF( info.NE.k ) THEN
471 CALL alaerh( path, 'CHESV_RK', info, k, uplo,
472 \$ n, n, -1, -1, nrhs, imat, nfail,
473 \$ nerrs, nout )
474 GO TO 120
475 ELSE IF( info.NE.0 ) THEN
476 GO TO 120
477 END IF
478*
479*+ TEST 1 Reconstruct matrix from factors and compute
480* residual.
481*
482 CALL chet01_3( uplo, n, a, lda, afac, lda, e,
483 \$ iwork, ainv, lda, rwork,
484 \$ result( 1 ) )
485*
486*+ TEST 2 Compute residual of the computed solution.
487*
488 CALL clacpy( 'Full', n, nrhs, b, lda, work, lda )
489 CALL cpot02( uplo, n, nrhs, a, lda, x, lda, work,
490 \$ lda, rwork, result( 2 ) )
491*
492*+ TEST 3
493* Check solution from generated exact solution.
494*
495 CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
496 \$ result( 3 ) )
497 nt = 3
498*
499* Print information about the tests that did not pass
500* the threshold.
501*
502 DO 110 k = 1, nt
503 IF( result( k ).GE.thresh ) THEN
504 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
505 \$ CALL aladhd( nout, path )
506 WRITE( nout, fmt = 9999 )'CHESV_RK', uplo,
507 \$ n, imat, k, result( k )
508 nfail = nfail + 1
509 END IF
510 110 CONTINUE
511 nrun = nrun + nt
512 120 CONTINUE
513 END IF
514*
515 150 CONTINUE
516*
517 160 CONTINUE
518 170 CONTINUE
519 180 CONTINUE
520*
521* Print a summary of the results.
522*
523 CALL alasvm( path, nout, nfail, nrun, nerrs )
524*
525 9999 FORMAT( 1x, a, ', UPLO=''', a1, ''', N =', i5, ', type ', i2,
526 \$ ', test ', i2, ', ratio =', g12.5 )
527 RETURN
528*
529* End of CDRVHE_RK
530*
subroutine alasvm(type, nout, nfail, nrun, nerrs)
ALASVM
Definition alasvm.f:73
subroutine clarhs(path, xtype, uplo, trans, m, n, kl, ku, nrhs, a, lda, x, ldx, b, ldb, iseed, info)
CLARHS
Definition clarhs.f:208
subroutine xlaenv(ispec, nvalue)
XLAENV
Definition xlaenv.f:81
subroutine alaerh(path, subnam, info, infoe, opts, m, n, kl, ku, n5, imat, nfail, nerrs, nout)
ALAERH
Definition alaerh.f:147
subroutine cerrvx(path, nunit)
CERRVX
Definition cerrvx.f:55
subroutine cget04(n, nrhs, x, ldx, xact, ldxact, rcond, resid)
CGET04
Definition cget04.f:102
subroutine chet01_3(uplo, n, a, lda, afac, ldafac, e, ipiv, c, ldc, rwork, resid)
CHET01_3
Definition chet01_3.f:141
subroutine clatb4(path, imat, m, n, type, kl, ku, anorm, mode, cndnum, dist)
CLATB4
Definition clatb4.f:121
subroutine clatms(m, n, dist, iseed, sym, d, mode, cond, dmax, kl, ku, pack, a, lda, work, info)
CLATMS
Definition clatms.f:332
subroutine cpot02(uplo, n, nrhs, a, lda, x, ldx, b, ldb, rwork, resid)
CPOT02
Definition cpot02.f:127
subroutine chesv_rk(uplo, n, nrhs, a, lda, e, ipiv, b, ldb, work, lwork, info)
CHESV_RK computes the solution to system of linear equations A * X = B for SY matrices
Definition chesv_rk.f:228
subroutine chetrf_rk(uplo, n, a, lda, e, ipiv, work, lwork, info)
CHETRF_RK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bunch...
Definition chetrf_rk.f:259
subroutine csytri_3(uplo, n, a, lda, e, ipiv, work, lwork, info)
CSYTRI_3
Definition csytri_3.f:170
subroutine chetri_3(uplo, n, a, lda, e, ipiv, work, lwork, info)
CHETRI_3
Definition chetri_3.f:170
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:103
real function clanhe(norm, uplo, n, a, lda, work)
CLANHE returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition clanhe.f:124
Here is the call graph for this function:
Here is the caller graph for this function: