LAPACK  3.10.0
LAPACK: Linear Algebra PACKage
sorgrq.f
Go to the documentation of this file.
1 *> \brief \b SORGRQ
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download SORGRQ + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorgrq.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorgrq.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorgrq.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * SUBROUTINE SORGRQ( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
22 *
23 * .. Scalar Arguments ..
24 * INTEGER INFO, K, LDA, LWORK, M, N
25 * ..
26 * .. Array Arguments ..
27 * REAL A( LDA, * ), TAU( * ), WORK( * )
28 * ..
29 *
30 *
31 *> \par Purpose:
32 * =============
33 *>
34 *> \verbatim
35 *>
36 *> SORGRQ generates an M-by-N real matrix Q with orthonormal rows,
37 *> which is defined as the last M rows of a product of K elementary
38 *> reflectors of order N
39 *>
40 *> Q = H(1) H(2) . . . H(k)
41 *>
42 *> as returned by SGERQF.
43 *> \endverbatim
44 *
45 * Arguments:
46 * ==========
47 *
48 *> \param[in] M
49 *> \verbatim
50 *> M is INTEGER
51 *> The number of rows of the matrix Q. M >= 0.
52 *> \endverbatim
53 *>
54 *> \param[in] N
55 *> \verbatim
56 *> N is INTEGER
57 *> The number of columns of the matrix Q. N >= M.
58 *> \endverbatim
59 *>
60 *> \param[in] K
61 *> \verbatim
62 *> K is INTEGER
63 *> The number of elementary reflectors whose product defines the
64 *> matrix Q. M >= K >= 0.
65 *> \endverbatim
66 *>
67 *> \param[in,out] A
68 *> \verbatim
69 *> A is REAL array, dimension (LDA,N)
70 *> On entry, the (m-k+i)-th row must contain the vector which
71 *> defines the elementary reflector H(i), for i = 1,2,...,k, as
72 *> returned by SGERQF in the last k rows of its array argument
73 *> A.
74 *> On exit, the M-by-N matrix Q.
75 *> \endverbatim
76 *>
77 *> \param[in] LDA
78 *> \verbatim
79 *> LDA is INTEGER
80 *> The first dimension of the array A. LDA >= max(1,M).
81 *> \endverbatim
82 *>
83 *> \param[in] TAU
84 *> \verbatim
85 *> TAU is REAL array, dimension (K)
86 *> TAU(i) must contain the scalar factor of the elementary
87 *> reflector H(i), as returned by SGERQF.
88 *> \endverbatim
89 *>
90 *> \param[out] WORK
91 *> \verbatim
92 *> WORK is REAL array, dimension (MAX(1,LWORK))
93 *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
94 *> \endverbatim
95 *>
96 *> \param[in] LWORK
97 *> \verbatim
98 *> LWORK is INTEGER
99 *> The dimension of the array WORK. LWORK >= max(1,M).
100 *> For optimum performance LWORK >= M*NB, where NB is the
101 *> optimal blocksize.
102 *>
103 *> If LWORK = -1, then a workspace query is assumed; the routine
104 *> only calculates the optimal size of the WORK array, returns
105 *> this value as the first entry of the WORK array, and no error
106 *> message related to LWORK is issued by XERBLA.
107 *> \endverbatim
108 *>
109 *> \param[out] INFO
110 *> \verbatim
111 *> INFO is INTEGER
112 *> = 0: successful exit
113 *> < 0: if INFO = -i, the i-th argument has an illegal value
114 *> \endverbatim
115 *
116 * Authors:
117 * ========
118 *
119 *> \author Univ. of Tennessee
120 *> \author Univ. of California Berkeley
121 *> \author Univ. of Colorado Denver
122 *> \author NAG Ltd.
123 *
124 *> \ingroup realOTHERcomputational
125 *
126 * =====================================================================
127  SUBROUTINE sorgrq( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
128 *
129 * -- LAPACK computational routine --
130 * -- LAPACK is a software package provided by Univ. of Tennessee, --
131 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
132 *
133 * .. Scalar Arguments ..
134  INTEGER INFO, K, LDA, LWORK, M, N
135 * ..
136 * .. Array Arguments ..
137  REAL A( LDA, * ), TAU( * ), WORK( * )
138 * ..
139 *
140 * =====================================================================
141 *
142 * .. Parameters ..
143  REAL ZERO
144  parameter( zero = 0.0e+0 )
145 * ..
146 * .. Local Scalars ..
147  LOGICAL LQUERY
148  INTEGER I, IB, II, IINFO, IWS, J, KK, L, LDWORK,
149  $ LWKOPT, NB, NBMIN, NX
150 * ..
151 * .. External Subroutines ..
152  EXTERNAL slarfb, slarft, sorgr2, xerbla
153 * ..
154 * .. Intrinsic Functions ..
155  INTRINSIC max, min
156 * ..
157 * .. External Functions ..
158  INTEGER ILAENV
159  EXTERNAL ilaenv
160 * ..
161 * .. Executable Statements ..
162 *
163 * Test the input arguments
164 *
165  info = 0
166  lquery = ( lwork.EQ.-1 )
167  IF( m.LT.0 ) THEN
168  info = -1
169  ELSE IF( n.LT.m ) THEN
170  info = -2
171  ELSE IF( k.LT.0 .OR. k.GT.m ) THEN
172  info = -3
173  ELSE IF( lda.LT.max( 1, m ) ) THEN
174  info = -5
175  END IF
176 *
177  IF( info.EQ.0 ) THEN
178  IF( m.LE.0 ) THEN
179  lwkopt = 1
180  ELSE
181  nb = ilaenv( 1, 'SORGRQ', ' ', m, n, k, -1 )
182  lwkopt = m*nb
183  END IF
184  work( 1 ) = lwkopt
185 *
186  IF( lwork.LT.max( 1, m ) .AND. .NOT.lquery ) THEN
187  info = -8
188  END IF
189  END IF
190 *
191  IF( info.NE.0 ) THEN
192  CALL xerbla( 'SORGRQ', -info )
193  RETURN
194  ELSE IF( lquery ) THEN
195  RETURN
196  END IF
197 *
198 * Quick return if possible
199 *
200  IF( m.LE.0 ) THEN
201  RETURN
202  END IF
203 *
204  nbmin = 2
205  nx = 0
206  iws = m
207  IF( nb.GT.1 .AND. nb.LT.k ) THEN
208 *
209 * Determine when to cross over from blocked to unblocked code.
210 *
211  nx = max( 0, ilaenv( 3, 'SORGRQ', ' ', m, n, k, -1 ) )
212  IF( nx.LT.k ) THEN
213 *
214 * Determine if workspace is large enough for blocked code.
215 *
216  ldwork = m
217  iws = ldwork*nb
218  IF( lwork.LT.iws ) THEN
219 *
220 * Not enough workspace to use optimal NB: reduce NB and
221 * determine the minimum value of NB.
222 *
223  nb = lwork / ldwork
224  nbmin = max( 2, ilaenv( 2, 'SORGRQ', ' ', m, n, k, -1 ) )
225  END IF
226  END IF
227  END IF
228 *
229  IF( nb.GE.nbmin .AND. nb.LT.k .AND. nx.LT.k ) THEN
230 *
231 * Use blocked code after the first block.
232 * The last kk rows are handled by the block method.
233 *
234  kk = min( k, ( ( k-nx+nb-1 ) / nb )*nb )
235 *
236 * Set A(1:m-kk,n-kk+1:n) to zero.
237 *
238  DO 20 j = n - kk + 1, n
239  DO 10 i = 1, m - kk
240  a( i, j ) = zero
241  10 CONTINUE
242  20 CONTINUE
243  ELSE
244  kk = 0
245  END IF
246 *
247 * Use unblocked code for the first or only block.
248 *
249  CALL sorgr2( m-kk, n-kk, k-kk, a, lda, tau, work, iinfo )
250 *
251  IF( kk.GT.0 ) THEN
252 *
253 * Use blocked code
254 *
255  DO 50 i = k - kk + 1, k, nb
256  ib = min( nb, k-i+1 )
257  ii = m - k + i
258  IF( ii.GT.1 ) THEN
259 *
260 * Form the triangular factor of the block reflector
261 * H = H(i+ib-1) . . . H(i+1) H(i)
262 *
263  CALL slarft( 'Backward', 'Rowwise', n-k+i+ib-1, ib,
264  $ a( ii, 1 ), lda, tau( i ), work, ldwork )
265 *
266 * Apply H**T to A(1:m-k+i-1,1:n-k+i+ib-1) from the right
267 *
268  CALL slarfb( 'Right', 'Transpose', 'Backward', 'Rowwise',
269  $ ii-1, n-k+i+ib-1, ib, a( ii, 1 ), lda, work,
270  $ ldwork, a, lda, work( ib+1 ), ldwork )
271  END IF
272 *
273 * Apply H**T to columns 1:n-k+i+ib-1 of current block
274 *
275  CALL sorgr2( ib, n-k+i+ib-1, ib, a( ii, 1 ), lda, tau( i ),
276  $ work, iinfo )
277 *
278 * Set columns n-k+i+ib:n of current block to zero
279 *
280  DO 40 l = n - k + i + ib, n
281  DO 30 j = ii, ii + ib - 1
282  a( j, l ) = zero
283  30 CONTINUE
284  40 CONTINUE
285  50 CONTINUE
286  END IF
287 *
288  work( 1 ) = iws
289  RETURN
290 *
291 * End of SORGRQ
292 *
293  END
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
subroutine slarfb(SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, T, LDT, C, LDC, WORK, LDWORK)
SLARFB applies a block reflector or its transpose to a general rectangular matrix.
Definition: slarfb.f:197
subroutine slarft(DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT)
SLARFT forms the triangular factor T of a block reflector H = I - vtvH
Definition: slarft.f:163
subroutine sorgr2(M, N, K, A, LDA, TAU, WORK, INFO)
SORGR2 generates all or part of the orthogonal matrix Q from an RQ factorization determined by sgerqf...
Definition: sorgr2.f:114
subroutine sorgrq(M, N, K, A, LDA, TAU, WORK, LWORK, INFO)
SORGRQ
Definition: sorgrq.f:128