LAPACK  3.10.0
LAPACK: Linear Algebra PACKage
cqrt01p.f
Go to the documentation of this file.
1 *> \brief \b CQRT01P
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE CQRT01P( M, N, A, AF, Q, R, LDA, TAU, WORK, LWORK,
12 * RWORK, RESULT )
13 *
14 * .. Scalar Arguments ..
15 * INTEGER LDA, LWORK, M, N
16 * ..
17 * .. Array Arguments ..
18 * REAL RESULT( * ), RWORK( * )
19 * COMPLEX A( LDA, * ), AF( LDA, * ), Q( LDA, * ),
20 * $ R( LDA, * ), TAU( * ), WORK( LWORK )
21 * ..
22 *
23 *
24 *> \par Purpose:
25 * =============
26 *>
27 *> \verbatim
28 *>
29 *> CQRT01P tests CGEQRFP, which computes the QR factorization of an m-by-n
30 *> matrix A, and partially tests CUNGQR which forms the m-by-m
31 *> orthogonal matrix Q.
32 *>
33 *> CQRT01P compares R with Q'*A, and checks that Q is orthogonal.
34 *> \endverbatim
35 *
36 * Arguments:
37 * ==========
38 *
39 *> \param[in] M
40 *> \verbatim
41 *> M is INTEGER
42 *> The number of rows of the matrix A. M >= 0.
43 *> \endverbatim
44 *>
45 *> \param[in] N
46 *> \verbatim
47 *> N is INTEGER
48 *> The number of columns of the matrix A. N >= 0.
49 *> \endverbatim
50 *>
51 *> \param[in] A
52 *> \verbatim
53 *> A is COMPLEX array, dimension (LDA,N)
54 *> The m-by-n matrix A.
55 *> \endverbatim
56 *>
57 *> \param[out] AF
58 *> \verbatim
59 *> AF is COMPLEX array, dimension (LDA,N)
60 *> Details of the QR factorization of A, as returned by CGEQRFP.
61 *> See CGEQRFP for further details.
62 *> \endverbatim
63 *>
64 *> \param[out] Q
65 *> \verbatim
66 *> Q is COMPLEX array, dimension (LDA,M)
67 *> The m-by-m orthogonal matrix Q.
68 *> \endverbatim
69 *>
70 *> \param[out] R
71 *> \verbatim
72 *> R is COMPLEX array, dimension (LDA,max(M,N))
73 *> \endverbatim
74 *>
75 *> \param[in] LDA
76 *> \verbatim
77 *> LDA is INTEGER
78 *> The leading dimension of the arrays A, AF, Q and R.
79 *> LDA >= max(M,N).
80 *> \endverbatim
81 *>
82 *> \param[out] TAU
83 *> \verbatim
84 *> TAU is COMPLEX array, dimension (min(M,N))
85 *> The scalar factors of the elementary reflectors, as returned
86 *> by CGEQRFP.
87 *> \endverbatim
88 *>
89 *> \param[out] WORK
90 *> \verbatim
91 *> WORK is COMPLEX array, dimension (LWORK)
92 *> \endverbatim
93 *>
94 *> \param[in] LWORK
95 *> \verbatim
96 *> LWORK is INTEGER
97 *> The dimension of the array WORK.
98 *> \endverbatim
99 *>
100 *> \param[out] RWORK
101 *> \verbatim
102 *> RWORK is REAL array, dimension (M)
103 *> \endverbatim
104 *>
105 *> \param[out] RESULT
106 *> \verbatim
107 *> RESULT is REAL array, dimension (2)
108 *> The test ratios:
109 *> RESULT(1) = norm( R - Q'*A ) / ( M * norm(A) * EPS )
110 *> RESULT(2) = norm( I - Q'*Q ) / ( M * EPS )
111 *> \endverbatim
112 *
113 * Authors:
114 * ========
115 *
116 *> \author Univ. of Tennessee
117 *> \author Univ. of California Berkeley
118 *> \author Univ. of Colorado Denver
119 *> \author NAG Ltd.
120 *
121 *> \ingroup complex_lin
122 *
123 * =====================================================================
124  SUBROUTINE cqrt01p( M, N, A, AF, Q, R, LDA, TAU, WORK, LWORK,
125  $ RWORK, RESULT )
126 *
127 * -- LAPACK test routine --
128 * -- LAPACK is a software package provided by Univ. of Tennessee, --
129 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
130 *
131 * .. Scalar Arguments ..
132  INTEGER LDA, LWORK, M, N
133 * ..
134 * .. Array Arguments ..
135  REAL RESULT( * ), RWORK( * )
136  COMPLEX A( LDA, * ), AF( LDA, * ), Q( LDA, * ),
137  $ r( lda, * ), tau( * ), work( lwork )
138 * ..
139 *
140 * =====================================================================
141 *
142 * .. Parameters ..
143  REAL ZERO, ONE
144  parameter( zero = 0.0e+0, one = 1.0e+0 )
145  COMPLEX ROGUE
146  parameter( rogue = ( -1.0e+10, -1.0e+10 ) )
147 * ..
148 * .. Local Scalars ..
149  INTEGER INFO, MINMN
150  REAL ANORM, EPS, RESID
151 * ..
152 * .. External Functions ..
153  REAL CLANGE, CLANSY, SLAMCH
154  EXTERNAL clange, clansy, slamch
155 * ..
156 * .. External Subroutines ..
157  EXTERNAL cgemm, cgeqrfp, cherk, clacpy, claset, cungqr
158 * ..
159 * .. Intrinsic Functions ..
160  INTRINSIC cmplx, max, min, real
161 * ..
162 * .. Scalars in Common ..
163  CHARACTER*32 SRNAMT
164 * ..
165 * .. Common blocks ..
166  COMMON / srnamc / srnamt
167 * ..
168 * .. Executable Statements ..
169 *
170  minmn = min( m, n )
171  eps = slamch( 'Epsilon' )
172 *
173 * Copy the matrix A to the array AF.
174 *
175  CALL clacpy( 'Full', m, n, a, lda, af, lda )
176 *
177 * Factorize the matrix A in the array AF.
178 *
179  srnamt = 'CGEQRFP'
180  CALL cgeqrfp( m, n, af, lda, tau, work, lwork, info )
181 *
182 * Copy details of Q
183 *
184  CALL claset( 'Full', m, m, rogue, rogue, q, lda )
185  CALL clacpy( 'Lower', m-1, n, af( 2, 1 ), lda, q( 2, 1 ), lda )
186 *
187 * Generate the m-by-m matrix Q
188 *
189  srnamt = 'CUNGQR'
190  CALL cungqr( m, m, minmn, q, lda, tau, work, lwork, info )
191 *
192 * Copy R
193 *
194  CALL claset( 'Full', m, n, cmplx( zero ), cmplx( zero ), r, lda )
195  CALL clacpy( 'Upper', m, n, af, lda, r, lda )
196 *
197 * Compute R - Q'*A
198 *
199  CALL cgemm( 'Conjugate transpose', 'No transpose', m, n, m,
200  $ cmplx( -one ), q, lda, a, lda, cmplx( one ), r, lda )
201 *
202 * Compute norm( R - Q'*A ) / ( M * norm(A) * EPS ) .
203 *
204  anorm = clange( '1', m, n, a, lda, rwork )
205  resid = clange( '1', m, n, r, lda, rwork )
206  IF( anorm.GT.zero ) THEN
207  result( 1 ) = ( ( resid / real( max( 1, m ) ) ) / anorm ) / eps
208  ELSE
209  result( 1 ) = zero
210  END IF
211 *
212 * Compute I - Q'*Q
213 *
214  CALL claset( 'Full', m, m, cmplx( zero ), cmplx( one ), r, lda )
215  CALL cherk( 'Upper', 'Conjugate transpose', m, m, -one, q, lda,
216  $ one, r, lda )
217 *
218 * Compute norm( I - Q'*Q ) / ( M * EPS ) .
219 *
220  resid = clansy( '1', 'Upper', m, r, lda, rwork )
221 *
222  result( 2 ) = ( resid / real( max( 1, m ) ) ) / eps
223 *
224  RETURN
225 *
226 * End of CQRT01P
227 *
228  END
subroutine cgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
CGEMM
Definition: cgemm.f:187
subroutine cherk(UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C, LDC)
CHERK
Definition: cherk.f:173
subroutine cqrt01p(M, N, A, AF, Q, R, LDA, TAU, WORK, LWORK, RWORK, RESULT)
CQRT01P
Definition: cqrt01p.f:126
subroutine cgeqrfp(M, N, A, LDA, TAU, WORK, LWORK, INFO)
CGEQRFP
Definition: cgeqrfp.f:149
subroutine claset(UPLO, M, N, ALPHA, BETA, A, LDA)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition: claset.f:106
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:103
subroutine cungqr(M, N, K, A, LDA, TAU, WORK, LWORK, INFO)
CUNGQR
Definition: cungqr.f:128