LAPACK  3.10.1
LAPACK: Linear Algebra PACKage
zchksy_rook.f
Go to the documentation of this file.
1 *> \brief \b ZCHKSY_ROOK
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE ZCHKSY_ROOK( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
12 * THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X,
13 * XACT, WORK, RWORK, IWORK, NOUT )
14 *
15 * .. Scalar Arguments ..
16 * LOGICAL TSTERR
17 * INTEGER NMAX, NN, NNB, NNS, NOUT
18 * DOUBLE PRECISION THRESH
19 * ..
20 * .. Array Arguments ..
21 * LOGICAL DOTYPE( * )
22 * INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
23 * DOUBLE PRECISION RWORK( * )
24 * COMPLEX*16 A( * ), AFAC( * ), AINV( * ), B( * ),
25 * $ WORK( * ), X( * ), XACT( * )
26 * ..
27 *
28 *
29 *> \par Purpose:
30 * =============
31 *>
32 *> \verbatim
33 *>
34 *> ZCHKSY_ROOK tests ZSYTRF_ROOK, -TRI_ROOK, -TRS_ROOK,
35 *> and -CON_ROOK.
36 *> \endverbatim
37 *
38 * Arguments:
39 * ==========
40 *
41 *> \param[in] DOTYPE
42 *> \verbatim
43 *> DOTYPE is LOGICAL array, dimension (NTYPES)
44 *> The matrix types to be used for testing. Matrices of type j
45 *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
46 *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
47 *> \endverbatim
48 *>
49 *> \param[in] NN
50 *> \verbatim
51 *> NN is INTEGER
52 *> The number of values of N contained in the vector NVAL.
53 *> \endverbatim
54 *>
55 *> \param[in] NVAL
56 *> \verbatim
57 *> NVAL is INTEGER array, dimension (NN)
58 *> The values of the matrix dimension N.
59 *> \endverbatim
60 *>
61 *> \param[in] NNB
62 *> \verbatim
63 *> NNB is INTEGER
64 *> The number of values of NB contained in the vector NBVAL.
65 *> \endverbatim
66 *>
67 *> \param[in] NBVAL
68 *> \verbatim
69 *> NBVAL is INTEGER array, dimension (NNB)
70 *> The values of the blocksize NB.
71 *> \endverbatim
72 *>
73 *> \param[in] NNS
74 *> \verbatim
75 *> NNS is INTEGER
76 *> The number of values of NRHS contained in the vector NSVAL.
77 *> \endverbatim
78 *>
79 *> \param[in] NSVAL
80 *> \verbatim
81 *> NSVAL is INTEGER array, dimension (NNS)
82 *> The values of the number of right hand sides NRHS.
83 *> \endverbatim
84 *>
85 *> \param[in] THRESH
86 *> \verbatim
87 *> THRESH is DOUBLE PRECISION
88 *> The threshold value for the test ratios. A result is
89 *> included in the output file if RESULT >= THRESH. To have
90 *> every test ratio printed, use THRESH = 0.
91 *> \endverbatim
92 *>
93 *> \param[in] TSTERR
94 *> \verbatim
95 *> TSTERR is LOGICAL
96 *> Flag that indicates whether error exits are to be tested.
97 *> \endverbatim
98 *>
99 *> \param[in] NMAX
100 *> \verbatim
101 *> NMAX is INTEGER
102 *> The maximum value permitted for N, used in dimensioning the
103 *> work arrays.
104 *> \endverbatim
105 *>
106 *> \param[out] A
107 *> \verbatim
108 *> A is COMPLEX*16 array, dimension (NMAX*NMAX)
109 *> \endverbatim
110 *>
111 *> \param[out] AFAC
112 *> \verbatim
113 *> AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)
114 *> \endverbatim
115 *>
116 *> \param[out] AINV
117 *> \verbatim
118 *> AINV is COMPLEX*16 array, dimension (NMAX*NMAX)
119 *> \endverbatim
120 *>
121 *> \param[out] B
122 *> \verbatim
123 *> B is COMPLEX*16 array, dimension (NMAX*NSMAX)
124 *> where NSMAX is the largest entry in NSVAL.
125 *> \endverbatim
126 *>
127 *> \param[out] X
128 *> \verbatim
129 *> X is COMPLEX*16 array, dimension (NMAX*NSMAX)
130 *> \endverbatim
131 *>
132 *> \param[out] XACT
133 *> \verbatim
134 *> XACT is COMPLEX*16 array, dimension (NMAX*NSMAX)
135 *> \endverbatim
136 *>
137 *> \param[out] WORK
138 *> \verbatim
139 *> WORK is COMPLEX*16 array, dimension (NMAX*max(3,NSMAX))
140 *> \endverbatim
141 *>
142 *> \param[out] RWORK
143 *> \verbatim
144 *> RWORK is DOUBLE PRECISION array, dimension (max(NMAX,2*NSMAX))
145 *> \endverbatim
146 *>
147 *> \param[out] IWORK
148 *> \verbatim
149 *> IWORK is INTEGER array, dimension (2*NMAX)
150 *> \endverbatim
151 *>
152 *> \param[in] NOUT
153 *> \verbatim
154 *> NOUT is INTEGER
155 *> The unit number for output.
156 *> \endverbatim
157 *
158 * Authors:
159 * ========
160 *
161 *> \author Univ. of Tennessee
162 *> \author Univ. of California Berkeley
163 *> \author Univ. of Colorado Denver
164 *> \author NAG Ltd.
165 *
166 *> \ingroup complex16_lin
167 *
168 * =====================================================================
169  SUBROUTINE zchksy_rook( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
170  $ THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X,
171  $ XACT, WORK, RWORK, IWORK, NOUT )
172 *
173 * -- LAPACK test routine --
174 * -- LAPACK is a software package provided by Univ. of Tennessee, --
175 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
176 *
177 * .. Scalar Arguments ..
178  LOGICAL TSTERR
179  INTEGER NMAX, NN, NNB, NNS, NOUT
180  DOUBLE PRECISION THRESH
181 * ..
182 * .. Array Arguments ..
183  LOGICAL DOTYPE( * )
184  INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
185  DOUBLE PRECISION RWORK( * )
186  COMPLEX*16 A( * ), AFAC( * ), AINV( * ), B( * ),
187  $ work( * ), x( * ), xact( * )
188 * ..
189 *
190 * =====================================================================
191 *
192 * .. Parameters ..
193  DOUBLE PRECISION ZERO, ONE
194  PARAMETER ( ZERO = 0.0d+0, one = 1.0d+0 )
195  DOUBLE PRECISION ONEHALF
196  parameter( onehalf = 0.5d+0 )
197  DOUBLE PRECISION EIGHT, SEVTEN
198  parameter( eight = 8.0d+0, sevten = 17.0d+0 )
199  COMPLEX*16 CZERO
200  parameter( czero = ( 0.0d+0, 0.0d+0 ) )
201  INTEGER NTYPES
202  parameter( ntypes = 11 )
203  INTEGER NTESTS
204  parameter( ntests = 7 )
205 * ..
206 * .. Local Scalars ..
207  LOGICAL TRFCON, ZEROT
208  CHARACTER DIST, TYPE, UPLO, XTYPE
209  CHARACTER*3 PATH, MATPATH
210  INTEGER I, I1, I2, IMAT, IN, INB, INFO, IOFF, IRHS,
211  $ iuplo, izero, j, k, kl, ku, lda, lwork, mode,
212  $ n, nb, nerrs, nfail, nimat, nrhs, nrun, nt
213  DOUBLE PRECISION ALPHA, ANORM, CNDNUM, CONST, DTEMP, SING_MAX,
214  $ SING_MIN, RCOND, RCONDC
215 * ..
216 * .. Local Arrays ..
217  CHARACTER UPLOS( 2 )
218  INTEGER ISEED( 4 ), ISEEDY( 4 )
219  DOUBLE PRECISION RESULT( NTESTS )
220  COMPLEX*16 BLOCK( 2, 2 ), ZDUMMY( 1 )
221 * ..
222 * .. External Functions ..
223  DOUBLE PRECISION DGET06, ZLANGE, ZLANSY
224  EXTERNAL DGET06, ZLANGE, ZLANSY
225 * ..
226 * .. External Subroutines ..
227  EXTERNAL alaerh, alahd, alasum, zerrsy, zgesvd, zget04,
231 * ..
232 * .. Intrinsic Functions ..
233  INTRINSIC max, min, sqrt
234 * ..
235 * .. Scalars in Common ..
236  LOGICAL LERR, OK
237  CHARACTER*32 SRNAMT
238  INTEGER INFOT, NUNIT
239 * ..
240 * .. Common blocks ..
241  COMMON / infoc / infot, nunit, ok, lerr
242  COMMON / srnamc / srnamt
243 * ..
244 * .. Data statements ..
245  DATA iseedy / 1988, 1989, 1990, 1991 /
246  DATA uplos / 'U', 'L' /
247 * ..
248 * .. Executable Statements ..
249 *
250 * Initialize constants and the random number seed.
251 *
252  alpha = ( one+sqrt( sevten ) ) / eight
253 *
254 * Test path
255 *
256  path( 1: 1 ) = 'Zomplex precision'
257  path( 2: 3 ) = 'SR'
258 *
259 * Path to generate matrices
260 *
261  matpath( 1: 1 ) = 'Zomplex precision'
262  matpath( 2: 3 ) = 'SY'
263 *
264  nrun = 0
265  nfail = 0
266  nerrs = 0
267  DO 10 i = 1, 4
268  iseed( i ) = iseedy( i )
269  10 CONTINUE
270 *
271 * Test the error exits
272 *
273  IF( tsterr )
274  $ CALL zerrsy( path, nout )
275  infot = 0
276 *
277 * Set the minimum block size for which the block routine should
278 * be used, which will be later returned by ILAENV
279 *
280  CALL xlaenv( 2, 2 )
281 *
282 * Do for each value of N in NVAL
283 *
284  DO 270 in = 1, nn
285  n = nval( in )
286  lda = max( n, 1 )
287  xtype = 'N'
288  nimat = ntypes
289  IF( n.LE.0 )
290  $ nimat = 1
291 *
292  izero = 0
293 *
294 * Do for each value of matrix type IMAT
295 *
296  DO 260 imat = 1, nimat
297 *
298 * Do the tests only if DOTYPE( IMAT ) is true.
299 *
300  IF( .NOT.dotype( imat ) )
301  $ GO TO 260
302 *
303 * Skip types 3, 4, 5, or 6 if the matrix size is too small.
304 *
305  zerot = imat.GE.3 .AND. imat.LE.6
306  IF( zerot .AND. n.LT.imat-2 )
307  $ GO TO 260
308 *
309 * Do first for UPLO = 'U', then for UPLO = 'L'
310 *
311  DO 250 iuplo = 1, 2
312  uplo = uplos( iuplo )
313 *
314 * Begin generate test matrix A.
315 *
316  IF( imat.NE.ntypes ) THEN
317 *
318 * Set up parameters with ZLATB4 for the matrix generator
319 * based on the type of matrix to be generated.
320 *
321  CALL zlatb4( matpath, imat, n, n, TYPE, kl, ku, anorm,
322  $ mode, cndnum, dist )
323 *
324 * Generate a matrix with ZLATMS.
325 *
326  srnamt = 'ZLATMS'
327  CALL zlatms( n, n, dist, iseed, TYPE, rwork, mode,
328  $ cndnum, anorm, kl, ku, uplo, a, lda,
329  $ work, info )
330 *
331 * Check error code from ZLATMS and handle error.
332 *
333  IF( info.NE.0 ) THEN
334  CALL alaerh( path, 'ZLATMS', info, 0, uplo, n, n,
335  $ -1, -1, -1, imat, nfail, nerrs, nout )
336 *
337 * Skip all tests for this generated matrix
338 *
339  GO TO 250
340  END IF
341 *
342 * For matrix types 3-6, zero one or more rows and
343 * columns of the matrix to test that INFO is returned
344 * correctly.
345 *
346  IF( zerot ) THEN
347  IF( imat.EQ.3 ) THEN
348  izero = 1
349  ELSE IF( imat.EQ.4 ) THEN
350  izero = n
351  ELSE
352  izero = n / 2 + 1
353  END IF
354 *
355  IF( imat.LT.6 ) THEN
356 *
357 * Set row and column IZERO to zero.
358 *
359  IF( iuplo.EQ.1 ) THEN
360  ioff = ( izero-1 )*lda
361  DO 20 i = 1, izero - 1
362  a( ioff+i ) = czero
363  20 CONTINUE
364  ioff = ioff + izero
365  DO 30 i = izero, n
366  a( ioff ) = czero
367  ioff = ioff + lda
368  30 CONTINUE
369  ELSE
370  ioff = izero
371  DO 40 i = 1, izero - 1
372  a( ioff ) = czero
373  ioff = ioff + lda
374  40 CONTINUE
375  ioff = ioff - izero
376  DO 50 i = izero, n
377  a( ioff+i ) = czero
378  50 CONTINUE
379  END IF
380  ELSE
381  IF( iuplo.EQ.1 ) THEN
382 *
383 * Set the first IZERO rows and columns to zero.
384 *
385  ioff = 0
386  DO 70 j = 1, n
387  i2 = min( j, izero )
388  DO 60 i = 1, i2
389  a( ioff+i ) = czero
390  60 CONTINUE
391  ioff = ioff + lda
392  70 CONTINUE
393  ELSE
394 *
395 * Set the last IZERO rows and columns to zero.
396 *
397  ioff = 0
398  DO 90 j = 1, n
399  i1 = max( j, izero )
400  DO 80 i = i1, n
401  a( ioff+i ) = czero
402  80 CONTINUE
403  ioff = ioff + lda
404  90 CONTINUE
405  END IF
406  END IF
407  ELSE
408  izero = 0
409  END IF
410 *
411  ELSE
412 *
413 * For matrix kind IMAT = 11, generate special block
414 * diagonal matrix to test alternate code
415 * for the 2 x 2 blocks.
416 *
417  CALL zlatsy( uplo, n, a, lda, iseed )
418 *
419  END IF
420 *
421 * End generate test matrix A.
422 *
423 *
424 * Do for each value of NB in NBVAL
425 *
426  DO 240 inb = 1, nnb
427 *
428 * Set the optimal blocksize, which will be later
429 * returned by ILAENV.
430 *
431  nb = nbval( inb )
432  CALL xlaenv( 1, nb )
433 *
434 * Copy the test matrix A into matrix AFAC which
435 * will be factorized in place. This is needed to
436 * preserve the test matrix A for subsequent tests.
437 *
438  CALL zlacpy( uplo, n, n, a, lda, afac, lda )
439 *
440 * Compute the L*D*L**T or U*D*U**T factorization of the
441 * matrix. IWORK stores details of the interchanges and
442 * the block structure of D. AINV is a work array for
443 * block factorization, LWORK is the length of AINV.
444 *
445  lwork = max( 2, nb )*lda
446  srnamt = 'ZSYTRF_ROOK'
447  CALL zsytrf_rook( uplo, n, afac, lda, iwork, ainv,
448  $ lwork, info )
449 *
450 * Adjust the expected value of INFO to account for
451 * pivoting.
452 *
453  k = izero
454  IF( k.GT.0 ) THEN
455  100 CONTINUE
456  IF( iwork( k ).LT.0 ) THEN
457  IF( iwork( k ).NE.-k ) THEN
458  k = -iwork( k )
459  GO TO 100
460  END IF
461  ELSE IF( iwork( k ).NE.k ) THEN
462  k = iwork( k )
463  GO TO 100
464  END IF
465  END IF
466 *
467 * Check error code from ZSYTRF_ROOK and handle error.
468 *
469  IF( info.NE.k)
470  $ CALL alaerh( path, 'ZSYTRF_ROOK', info, k,
471  $ uplo, n, n, -1, -1, nb, imat,
472  $ nfail, nerrs, nout )
473 *
474 * Set the condition estimate flag if the INFO is not 0.
475 *
476  IF( info.NE.0 ) THEN
477  trfcon = .true.
478  ELSE
479  trfcon = .false.
480  END IF
481 *
482 *+ TEST 1
483 * Reconstruct matrix from factors and compute residual.
484 *
485  CALL zsyt01_rook( uplo, n, a, lda, afac, lda, iwork,
486  $ ainv, lda, rwork, result( 1 ) )
487  nt = 1
488 *
489 *+ TEST 2
490 * Form the inverse and compute the residual,
491 * if the factorization was competed without INFO > 0
492 * (i.e. there is no zero rows and columns).
493 * Do it only for the first block size.
494 *
495  IF( inb.EQ.1 .AND. .NOT.trfcon ) THEN
496  CALL zlacpy( uplo, n, n, afac, lda, ainv, lda )
497  srnamt = 'ZSYTRI_ROOK'
498  CALL zsytri_rook( uplo, n, ainv, lda, iwork, work,
499  $ info )
500 *
501 * Check error code from ZSYTRI_ROOK and handle error.
502 *
503  IF( info.NE.0 )
504  $ CALL alaerh( path, 'ZSYTRI_ROOK', info, -1,
505  $ uplo, n, n, -1, -1, -1, imat,
506  $ nfail, nerrs, nout )
507 *
508 * Compute the residual for a symmetric matrix times
509 * its inverse.
510 *
511  CALL zsyt03( uplo, n, a, lda, ainv, lda, work, lda,
512  $ rwork, rcondc, result( 2 ) )
513  nt = 2
514  END IF
515 *
516 * Print information about the tests that did not pass
517 * the threshold.
518 *
519  DO 110 k = 1, nt
520  IF( result( k ).GE.thresh ) THEN
521  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
522  $ CALL alahd( nout, path )
523  WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
524  $ result( k )
525  nfail = nfail + 1
526  END IF
527  110 CONTINUE
528  nrun = nrun + nt
529 *
530 *+ TEST 3
531 * Compute largest element in U or L
532 *
533  result( 3 ) = zero
534  dtemp = zero
535 *
536  const = ( ( alpha**2-one ) / ( alpha**2-onehalf ) ) /
537  $ ( one-alpha )
538 *
539  IF( iuplo.EQ.1 ) THEN
540 *
541 * Compute largest element in U
542 *
543  k = n
544  120 CONTINUE
545  IF( k.LE.1 )
546  $ GO TO 130
547 *
548  IF( iwork( k ).GT.zero ) THEN
549 *
550 * Get max absolute value from elements
551 * in column k in in U
552 *
553  dtemp = zlange( 'M', k-1, 1,
554  $ afac( ( k-1 )*lda+1 ), lda, rwork )
555  ELSE
556 *
557 * Get max absolute value from elements
558 * in columns k and k-1 in U
559 *
560  dtemp = zlange( 'M', k-2, 2,
561  $ afac( ( k-2 )*lda+1 ), lda, rwork )
562  k = k - 1
563 *
564  END IF
565 *
566 * DTEMP should be bounded by CONST
567 *
568  dtemp = dtemp - const + thresh
569  IF( dtemp.GT.result( 3 ) )
570  $ result( 3 ) = dtemp
571 *
572  k = k - 1
573 *
574  GO TO 120
575  130 CONTINUE
576 *
577  ELSE
578 *
579 * Compute largest element in L
580 *
581  k = 1
582  140 CONTINUE
583  IF( k.GE.n )
584  $ GO TO 150
585 *
586  IF( iwork( k ).GT.zero ) THEN
587 *
588 * Get max absolute value from elements
589 * in column k in in L
590 *
591  dtemp = zlange( 'M', n-k, 1,
592  $ afac( ( k-1 )*lda+k+1 ), lda, rwork )
593  ELSE
594 *
595 * Get max absolute value from elements
596 * in columns k and k+1 in L
597 *
598  dtemp = zlange( 'M', n-k-1, 2,
599  $ afac( ( k-1 )*lda+k+2 ), lda, rwork )
600  k = k + 1
601 *
602  END IF
603 *
604 * DTEMP should be bounded by CONST
605 *
606  dtemp = dtemp - const + thresh
607  IF( dtemp.GT.result( 3 ) )
608  $ result( 3 ) = dtemp
609 *
610  k = k + 1
611 *
612  GO TO 140
613  150 CONTINUE
614  END IF
615 *
616 *
617 *+ TEST 4
618 * Compute largest 2-Norm (condition number)
619 * of 2-by-2 diag blocks
620 *
621  result( 4 ) = zero
622  dtemp = zero
623 *
624  const = ( ( alpha**2-one ) / ( alpha**2-onehalf ) )*
625  $ ( ( one + alpha ) / ( one - alpha ) )
626 *
627  IF( iuplo.EQ.1 ) THEN
628 *
629 * Loop backward for UPLO = 'U'
630 *
631  k = n
632  160 CONTINUE
633  IF( k.LE.1 )
634  $ GO TO 170
635 *
636  IF( iwork( k ).LT.zero ) THEN
637 *
638 * Get the two singular values
639 * (real and non-negative) of a 2-by-2 block,
640 * store them in RWORK array
641 *
642  block( 1, 1 ) = afac( ( k-2 )*lda+k-1 )
643  block( 1, 2 ) = afac( (k-1)*lda+k-1 )
644  block( 2, 1 ) = block( 1, 2 )
645  block( 2, 2 ) = afac( (k-1)*lda+k )
646 *
647  CALL zgesvd( 'N', 'N', 2, 2, block, 2, rwork,
648  $ zdummy, 1, zdummy, 1,
649  $ work, 6, rwork( 3 ), info )
650 *
651 *
652  sing_max = rwork( 1 )
653  sing_min = rwork( 2 )
654 *
655  dtemp = sing_max / sing_min
656 *
657 * DTEMP should be bounded by CONST
658 *
659  dtemp = dtemp - const + thresh
660  IF( dtemp.GT.result( 4 ) )
661  $ result( 4 ) = dtemp
662  k = k - 1
663 *
664  END IF
665 *
666  k = k - 1
667 *
668  GO TO 160
669  170 CONTINUE
670 *
671  ELSE
672 *
673 * Loop forward for UPLO = 'L'
674 *
675  k = 1
676  180 CONTINUE
677  IF( k.GE.n )
678  $ GO TO 190
679 *
680  IF( iwork( k ).LT.zero ) THEN
681 *
682 * Get the two singular values
683 * (real and non-negative) of a 2-by-2 block,
684 * store them in RWORK array
685 *
686  block( 1, 1 ) = afac( ( k-1 )*lda+k )
687  block( 2, 1 ) = afac( ( k-1 )*lda+k+1 )
688  block( 1, 2 ) = block( 2, 1 )
689  block( 2, 2 ) = afac( k*lda+k+1 )
690 *
691  CALL zgesvd( 'N', 'N', 2, 2, block, 2, rwork,
692  $ zdummy, 1, zdummy, 1,
693  $ work, 6, rwork(3), info )
694 *
695  sing_max = rwork( 1 )
696  sing_min = rwork( 2 )
697 *
698  dtemp = sing_max / sing_min
699 *
700 * DTEMP should be bounded by CONST
701 *
702  dtemp = dtemp - const + thresh
703  IF( dtemp.GT.result( 4 ) )
704  $ result( 4 ) = dtemp
705  k = k + 1
706 *
707  END IF
708 *
709  k = k + 1
710 *
711  GO TO 180
712  190 CONTINUE
713  END IF
714 *
715 * Print information about the tests that did not pass
716 * the threshold.
717 *
718  DO 200 k = 3, 4
719  IF( result( k ).GE.thresh ) THEN
720  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
721  $ CALL alahd( nout, path )
722  WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
723  $ result( k )
724  nfail = nfail + 1
725  END IF
726  200 CONTINUE
727  nrun = nrun + 2
728 *
729 * Skip the other tests if this is not the first block
730 * size.
731 *
732  IF( inb.GT.1 )
733  $ GO TO 240
734 *
735 * Do only the condition estimate if INFO is not 0.
736 *
737  IF( trfcon ) THEN
738  rcondc = zero
739  GO TO 230
740  END IF
741 *
742 * Do for each value of NRHS in NSVAL.
743 *
744  DO 220 irhs = 1, nns
745  nrhs = nsval( irhs )
746 *
747 *+ TEST 5 ( Using TRS_ROOK)
748 * Solve and compute residual for A * X = B.
749 *
750 * Choose a set of NRHS random solution vectors
751 * stored in XACT and set up the right hand side B
752 *
753  srnamt = 'ZLARHS'
754  CALL zlarhs( matpath, xtype, uplo, ' ', n, n,
755  $ kl, ku, nrhs, a, lda, xact, lda,
756  $ b, lda, iseed, info )
757  CALL zlacpy( 'Full', n, nrhs, b, lda, x, lda )
758 *
759  srnamt = 'ZSYTRS_ROOK'
760  CALL zsytrs_rook( uplo, n, nrhs, afac, lda, iwork,
761  $ x, lda, info )
762 *
763 * Check error code from ZSYTRS_ROOK and handle error.
764 *
765  IF( info.NE.0 )
766  $ CALL alaerh( path, 'ZSYTRS_ROOK', info, 0,
767  $ uplo, n, n, -1, -1, nrhs, imat,
768  $ nfail, nerrs, nout )
769 *
770  CALL zlacpy( 'Full', n, nrhs, b, lda, work, lda )
771 *
772 * Compute the residual for the solution
773 *
774  CALL zsyt02( uplo, n, nrhs, a, lda, x, lda, work,
775  $ lda, rwork, result( 5 ) )
776 *
777 *+ TEST 6
778 * Check solution from generated exact solution.
779 *
780  CALL zget04( n, nrhs, x, lda, xact, lda, rcondc,
781  $ result( 6 ) )
782 *
783 * Print information about the tests that did not pass
784 * the threshold.
785 *
786  DO 210 k = 5, 6
787  IF( result( k ).GE.thresh ) THEN
788  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
789  $ CALL alahd( nout, path )
790  WRITE( nout, fmt = 9998 )uplo, n, nrhs,
791  $ imat, k, result( k )
792  nfail = nfail + 1
793  END IF
794  210 CONTINUE
795  nrun = nrun + 2
796 *
797 * End do for each value of NRHS in NSVAL.
798 *
799  220 CONTINUE
800 *
801 *+ TEST 7
802 * Get an estimate of RCOND = 1/CNDNUM.
803 *
804  230 CONTINUE
805  anorm = zlansy( '1', uplo, n, a, lda, rwork )
806  srnamt = 'ZSYCON_ROOK'
807  CALL zsycon_rook( uplo, n, afac, lda, iwork, anorm,
808  $ rcond, work, info )
809 *
810 * Check error code from ZSYCON_ROOK and handle error.
811 *
812  IF( info.NE.0 )
813  $ CALL alaerh( path, 'ZSYCON_ROOK', info, 0,
814  $ uplo, n, n, -1, -1, -1, imat,
815  $ nfail, nerrs, nout )
816 *
817 * Compute the test ratio to compare values of RCOND
818 *
819  result( 7 ) = dget06( rcond, rcondc )
820 *
821 * Print information about the tests that did not pass
822 * the threshold.
823 *
824  IF( result( 7 ).GE.thresh ) THEN
825  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
826  $ CALL alahd( nout, path )
827  WRITE( nout, fmt = 9997 )uplo, n, imat, 7,
828  $ result( 7 )
829  nfail = nfail + 1
830  END IF
831  nrun = nrun + 1
832  240 CONTINUE
833 *
834  250 CONTINUE
835  260 CONTINUE
836  270 CONTINUE
837 *
838 * Print a summary of the results.
839 *
840  CALL alasum( path, nout, nfail, nrun, nerrs )
841 *
842  9999 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NB =', i4, ', type ',
843  $ i2, ', test ', i2, ', ratio =', g12.5 )
844  9998 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NRHS=', i3, ', type ',
845  $ i2, ', test(', i2, ') =', g12.5 )
846  9997 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ',', 10x, ' type ', i2,
847  $ ', test(', i2, ') =', g12.5 )
848  RETURN
849 *
850 * End of ZCHKSY_ROOK
851 *
852  END
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:73
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:81
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:107
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:147
subroutine zlarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
ZLARHS
Definition: zlarhs.f:208
subroutine zsyt02(UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
ZSYT02
Definition: zsyt02.f:127
subroutine zlatsy(UPLO, N, X, LDX, ISEED)
ZLATSY
Definition: zlatsy.f:89
subroutine zsyt03(UPLO, N, A, LDA, AINV, LDAINV, WORK, LDWORK, RWORK, RCOND, RESID)
ZSYT03
Definition: zsyt03.f:126
subroutine zget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
ZGET04
Definition: zget04.f:102
subroutine zchksy_rook(DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL, THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK, NOUT)
ZCHKSY_ROOK
Definition: zchksy_rook.f:172
subroutine zlatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
ZLATB4
Definition: zlatb4.f:121
subroutine zsyt01_rook(UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC, RWORK, RESID)
ZSYT01_ROOK
Definition: zsyt01_rook.f:125
subroutine zerrsy(PATH, NUNIT)
ZERRSY
Definition: zerrsy.f:55
subroutine zlatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
ZLATMS
Definition: zlatms.f:332
subroutine zgesvd(JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK, LWORK, RWORK, INFO)
ZGESVD computes the singular value decomposition (SVD) for GE matrices
Definition: zgesvd.f:214
subroutine zlacpy(UPLO, M, N, A, LDA, B, LDB)
ZLACPY copies all or part of one two-dimensional array to another.
Definition: zlacpy.f:103
subroutine zsycon_rook(UPLO, N, A, LDA, IPIV, ANORM, RCOND, WORK, INFO)
ZSYCON_ROOK
Definition: zsycon_rook.f:139
subroutine zsytrs_rook(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
ZSYTRS_ROOK
Definition: zsytrs_rook.f:136
subroutine zsytri_rook(UPLO, N, A, LDA, IPIV, WORK, INFO)
ZSYTRI_ROOK
Definition: zsytri_rook.f:129
subroutine zsytrf_rook(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
ZSYTRF_ROOK
Definition: zsytrf_rook.f:208