LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
ssyevr_2stage.f
Go to the documentation of this file.
1*> \brief <b> SSYEVR_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices</b>
2*
3* @generated from dsyevr_2stage.f, fortran d -> s, Sat Nov 5 23:50:10 2016
4*
5* =========== DOCUMENTATION ===========
6*
7* Online html documentation available at
8* http://www.netlib.org/lapack/explore-html/
9*
10*> \htmlonly
11*> Download SSYEVR_2STAGE + dependencies
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssyevr_2stage.f">
13*> [TGZ]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssyevr_2stage.f">
15*> [ZIP]</a>
16*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssyevr_2stage.f">
17*> [TXT]</a>
18*> \endhtmlonly
19*
20* Definition:
21* ===========
22*
23* SUBROUTINE SSYEVR_2STAGE( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU,
24* IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK,
25* LWORK, IWORK, LIWORK, INFO )
26*
27* IMPLICIT NONE
28*
29* .. Scalar Arguments ..
30* CHARACTER JOBZ, RANGE, UPLO
31* INTEGER IL, INFO, IU, LDA, LDZ, LIWORK, LWORK, M, N
32* REAL ABSTOL, VL, VU
33* ..
34* .. Array Arguments ..
35* INTEGER ISUPPZ( * ), IWORK( * )
36* REAL A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
37* ..
38*
39*
40*> \par Purpose:
41* =============
42*>
43*> \verbatim
44*>
45*> SSYEVR_2STAGE computes selected eigenvalues and, optionally, eigenvectors
46*> of a real symmetric matrix A using the 2stage technique for
47*> the reduction to tridiagonal. Eigenvalues and eigenvectors can be
48*> selected by specifying either a range of values or a range of
49*> indices for the desired eigenvalues.
50*>
51*> SSYEVR_2STAGE first reduces the matrix A to tridiagonal form T with a call
52*> to SSYTRD. Then, whenever possible, SSYEVR_2STAGE calls SSTEMR to compute
53*> the eigenspectrum using Relatively Robust Representations. SSTEMR
54*> computes eigenvalues by the dqds algorithm, while orthogonal
55*> eigenvectors are computed from various "good" L D L^T representations
56*> (also known as Relatively Robust Representations). Gram-Schmidt
57*> orthogonalization is avoided as far as possible. More specifically,
58*> the various steps of the algorithm are as follows.
59*>
60*> For each unreduced block (submatrix) of T,
61*> (a) Compute T - sigma I = L D L^T, so that L and D
62*> define all the wanted eigenvalues to high relative accuracy.
63*> This means that small relative changes in the entries of D and L
64*> cause only small relative changes in the eigenvalues and
65*> eigenvectors. The standard (unfactored) representation of the
66*> tridiagonal matrix T does not have this property in general.
67*> (b) Compute the eigenvalues to suitable accuracy.
68*> If the eigenvectors are desired, the algorithm attains full
69*> accuracy of the computed eigenvalues only right before
70*> the corresponding vectors have to be computed, see steps c) and d).
71*> (c) For each cluster of close eigenvalues, select a new
72*> shift close to the cluster, find a new factorization, and refine
73*> the shifted eigenvalues to suitable accuracy.
74*> (d) For each eigenvalue with a large enough relative separation compute
75*> the corresponding eigenvector by forming a rank revealing twisted
76*> factorization. Go back to (c) for any clusters that remain.
77*>
78*> The desired accuracy of the output can be specified by the input
79*> parameter ABSTOL.
80*>
81*> For more details, see SSTEMR's documentation and:
82*> - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
83*> to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
84*> Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
85*> - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
86*> Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
87*> 2004. Also LAPACK Working Note 154.
88*> - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
89*> tridiagonal eigenvalue/eigenvector problem",
90*> Computer Science Division Technical Report No. UCB/CSD-97-971,
91*> UC Berkeley, May 1997.
92*>
93*>
94*> Note 1 : SSYEVR_2STAGE calls SSTEMR when the full spectrum is requested
95*> on machines which conform to the ieee-754 floating point standard.
96*> SSYEVR_2STAGE calls SSTEBZ and SSTEIN on non-ieee machines and
97*> when partial spectrum requests are made.
98*>
99*> Normal execution of SSTEMR may create NaNs and infinities and
100*> hence may abort due to a floating point exception in environments
101*> which do not handle NaNs and infinities in the ieee standard default
102*> manner.
103*> \endverbatim
104*
105* Arguments:
106* ==========
107*
108*> \param[in] JOBZ
109*> \verbatim
110*> JOBZ is CHARACTER*1
111*> = 'N': Compute eigenvalues only;
112*> = 'V': Compute eigenvalues and eigenvectors.
113*> Not available in this release.
114*> \endverbatim
115*>
116*> \param[in] RANGE
117*> \verbatim
118*> RANGE is CHARACTER*1
119*> = 'A': all eigenvalues will be found.
120*> = 'V': all eigenvalues in the half-open interval (VL,VU]
121*> will be found.
122*> = 'I': the IL-th through IU-th eigenvalues will be found.
123*> For RANGE = 'V' or 'I' and IU - IL < N - 1, SSTEBZ and
124*> SSTEIN are called
125*> \endverbatim
126*>
127*> \param[in] UPLO
128*> \verbatim
129*> UPLO is CHARACTER*1
130*> = 'U': Upper triangle of A is stored;
131*> = 'L': Lower triangle of A is stored.
132*> \endverbatim
133*>
134*> \param[in] N
135*> \verbatim
136*> N is INTEGER
137*> The order of the matrix A. N >= 0.
138*> \endverbatim
139*>
140*> \param[in,out] A
141*> \verbatim
142*> A is REAL array, dimension (LDA, N)
143*> On entry, the symmetric matrix A. If UPLO = 'U', the
144*> leading N-by-N upper triangular part of A contains the
145*> upper triangular part of the matrix A. If UPLO = 'L',
146*> the leading N-by-N lower triangular part of A contains
147*> the lower triangular part of the matrix A.
148*> On exit, the lower triangle (if UPLO='L') or the upper
149*> triangle (if UPLO='U') of A, including the diagonal, is
150*> destroyed.
151*> \endverbatim
152*>
153*> \param[in] LDA
154*> \verbatim
155*> LDA is INTEGER
156*> The leading dimension of the array A. LDA >= max(1,N).
157*> \endverbatim
158*>
159*> \param[in] VL
160*> \verbatim
161*> VL is REAL
162*> If RANGE='V', the lower bound of the interval to
163*> be searched for eigenvalues. VL < VU.
164*> Not referenced if RANGE = 'A' or 'I'.
165*> \endverbatim
166*>
167*> \param[in] VU
168*> \verbatim
169*> VU is REAL
170*> If RANGE='V', the upper bound of the interval to
171*> be searched for eigenvalues. VL < VU.
172*> Not referenced if RANGE = 'A' or 'I'.
173*> \endverbatim
174*>
175*> \param[in] IL
176*> \verbatim
177*> IL is INTEGER
178*> If RANGE='I', the index of the
179*> smallest eigenvalue to be returned.
180*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
181*> Not referenced if RANGE = 'A' or 'V'.
182*> \endverbatim
183*>
184*> \param[in] IU
185*> \verbatim
186*> IU is INTEGER
187*> If RANGE='I', the index of the
188*> largest eigenvalue to be returned.
189*> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
190*> Not referenced if RANGE = 'A' or 'V'.
191*> \endverbatim
192*>
193*> \param[in] ABSTOL
194*> \verbatim
195*> ABSTOL is REAL
196*> The absolute error tolerance for the eigenvalues.
197*> An approximate eigenvalue is accepted as converged
198*> when it is determined to lie in an interval [a,b]
199*> of width less than or equal to
200*>
201*> ABSTOL + EPS * max( |a|,|b| ) ,
202*>
203*> where EPS is the machine precision. If ABSTOL is less than
204*> or equal to zero, then EPS*|T| will be used in its place,
205*> where |T| is the 1-norm of the tridiagonal matrix obtained
206*> by reducing A to tridiagonal form.
207*>
208*> See "Computing Small Singular Values of Bidiagonal Matrices
209*> with Guaranteed High Relative Accuracy," by Demmel and
210*> Kahan, LAPACK Working Note #3.
211*>
212*> If high relative accuracy is important, set ABSTOL to
213*> SLAMCH( 'Safe minimum' ). Doing so will guarantee that
214*> eigenvalues are computed to high relative accuracy when
215*> possible in future releases. The current code does not
216*> make any guarantees about high relative accuracy, but
217*> future releases will. See J. Barlow and J. Demmel,
218*> "Computing Accurate Eigensystems of Scaled Diagonally
219*> Dominant Matrices", LAPACK Working Note #7, for a discussion
220*> of which matrices define their eigenvalues to high relative
221*> accuracy.
222*> \endverbatim
223*>
224*> \param[out] M
225*> \verbatim
226*> M is INTEGER
227*> The total number of eigenvalues found. 0 <= M <= N.
228*> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
229*> \endverbatim
230*>
231*> \param[out] W
232*> \verbatim
233*> W is REAL array, dimension (N)
234*> The first M elements contain the selected eigenvalues in
235*> ascending order.
236*> \endverbatim
237*>
238*> \param[out] Z
239*> \verbatim
240*> Z is REAL array, dimension (LDZ, max(1,M))
241*> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
242*> contain the orthonormal eigenvectors of the matrix A
243*> corresponding to the selected eigenvalues, with the i-th
244*> column of Z holding the eigenvector associated with W(i).
245*> If JOBZ = 'N', then Z is not referenced.
246*> Note: the user must ensure that at least max(1,M) columns are
247*> supplied in the array Z; if RANGE = 'V', the exact value of M
248*> is not known in advance and an upper bound must be used.
249*> Supplying N columns is always safe.
250*> \endverbatim
251*>
252*> \param[in] LDZ
253*> \verbatim
254*> LDZ is INTEGER
255*> The leading dimension of the array Z. LDZ >= 1, and if
256*> JOBZ = 'V', LDZ >= max(1,N).
257*> \endverbatim
258*>
259*> \param[out] ISUPPZ
260*> \verbatim
261*> ISUPPZ is INTEGER array, dimension ( 2*max(1,M) )
262*> The support of the eigenvectors in Z, i.e., the indices
263*> indicating the nonzero elements in Z. The i-th eigenvector
264*> is nonzero only in elements ISUPPZ( 2*i-1 ) through
265*> ISUPPZ( 2*i ). This is an output of SSTEMR (tridiagonal
266*> matrix). The support of the eigenvectors of A is typically
267*> 1:N because of the orthogonal transformations applied by SORMTR.
268*> Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
269*> \endverbatim
270*>
271*> \param[out] WORK
272*> \verbatim
273*> WORK is REAL array, dimension (MAX(1,LWORK))
274*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
275*> \endverbatim
276*>
277*> \param[in] LWORK
278*> \verbatim
279*> LWORK is INTEGER
280*> The dimension of the array WORK.
281*> If JOBZ = 'N' and N > 1, LWORK must be queried.
282*> LWORK = MAX(1, 26*N, dimension) where
283*> dimension = max(stage1,stage2) + (KD+1)*N + 5*N
284*> = N*KD + N*max(KD+1,FACTOPTNB)
285*> + max(2*KD*KD, KD*NTHREADS)
286*> + (KD+1)*N + 5*N
287*> where KD is the blocking size of the reduction,
288*> FACTOPTNB is the blocking used by the QR or LQ
289*> algorithm, usually FACTOPTNB=128 is a good choice
290*> NTHREADS is the number of threads used when
291*> openMP compilation is enabled, otherwise =1.
292*> If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available
293*>
294*> If LWORK = -1, then a workspace query is assumed; the routine
295*> only calculates the optimal size of the WORK array, returns
296*> this value as the first entry of the WORK array, and no error
297*> message related to LWORK is issued by XERBLA.
298*> \endverbatim
299*>
300*> \param[out] IWORK
301*> \verbatim
302*> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
303*> On exit, if INFO = 0, IWORK(1) returns the optimal LWORK.
304*> \endverbatim
305*>
306*> \param[in] LIWORK
307*> \verbatim
308*> LIWORK is INTEGER
309*> The dimension of the array IWORK. LIWORK >= max(1,10*N).
310*>
311*> If LIWORK = -1, then a workspace query is assumed; the
312*> routine only calculates the optimal size of the IWORK array,
313*> returns this value as the first entry of the IWORK array, and
314*> no error message related to LIWORK is issued by XERBLA.
315*> \endverbatim
316*>
317*> \param[out] INFO
318*> \verbatim
319*> INFO is INTEGER
320*> = 0: successful exit
321*> < 0: if INFO = -i, the i-th argument had an illegal value
322*> > 0: Internal error
323*> \endverbatim
324*
325* Authors:
326* ========
327*
328*> \author Univ. of Tennessee
329*> \author Univ. of California Berkeley
330*> \author Univ. of Colorado Denver
331*> \author NAG Ltd.
332*
333*> \ingroup heevr_2stage
334*
335*> \par Contributors:
336* ==================
337*>
338*> Inderjit Dhillon, IBM Almaden, USA \n
339*> Osni Marques, LBNL/NERSC, USA \n
340*> Ken Stanley, Computer Science Division, University of
341*> California at Berkeley, USA \n
342*> Jason Riedy, Computer Science Division, University of
343*> California at Berkeley, USA \n
344*>
345*> \par Further Details:
346* =====================
347*>
348*> \verbatim
349*>
350*> All details about the 2stage techniques are available in:
351*>
352*> Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
353*> Parallel reduction to condensed forms for symmetric eigenvalue problems
354*> using aggregated fine-grained and memory-aware kernels. In Proceedings
355*> of 2011 International Conference for High Performance Computing,
356*> Networking, Storage and Analysis (SC '11), New York, NY, USA,
357*> Article 8 , 11 pages.
358*> http://doi.acm.org/10.1145/2063384.2063394
359*>
360*> A. Haidar, J. Kurzak, P. Luszczek, 2013.
361*> An improved parallel singular value algorithm and its implementation
362*> for multicore hardware, In Proceedings of 2013 International Conference
363*> for High Performance Computing, Networking, Storage and Analysis (SC '13).
364*> Denver, Colorado, USA, 2013.
365*> Article 90, 12 pages.
366*> http://doi.acm.org/10.1145/2503210.2503292
367*>
368*> A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
369*> A novel hybrid CPU-GPU generalized eigensolver for electronic structure
370*> calculations based on fine-grained memory aware tasks.
371*> International Journal of High Performance Computing Applications.
372*> Volume 28 Issue 2, Pages 196-209, May 2014.
373*> http://hpc.sagepub.com/content/28/2/196
374*>
375*> \endverbatim
376*
377* =====================================================================
378 SUBROUTINE ssyevr_2stage( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU,
379 $ IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK,
380 $ LWORK, IWORK, LIWORK, INFO )
381*
382 IMPLICIT NONE
383*
384* -- LAPACK driver routine --
385* -- LAPACK is a software package provided by Univ. of Tennessee, --
386* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
387*
388* .. Scalar Arguments ..
389 CHARACTER JOBZ, RANGE, UPLO
390 INTEGER IL, INFO, IU, LDA, LDZ, LIWORK, LWORK, M, N
391 REAL ABSTOL, VL, VU
392* ..
393* .. Array Arguments ..
394 INTEGER ISUPPZ( * ), IWORK( * )
395 REAL A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * )
396* ..
397*
398* =====================================================================
399*
400* .. Parameters ..
401 REAL ZERO, ONE, TWO
402 PARAMETER ( ZERO = 0.0e+0, one = 1.0e+0, two = 2.0e+0 )
403* ..
404* .. Local Scalars ..
405 LOGICAL ALLEIG, INDEIG, LOWER, LQUERY, VALEIG, WANTZ,
406 $ TRYRAC, TEST
407 CHARACTER ORDER
408 INTEGER I, IEEEOK, IINFO, IMAX, INDD, INDDD, INDE,
409 $ indee, indibl, indifl, indisp, indiwo, indtau,
410 $ indwk, indwkn, iscale, j, jj, liwmin,
411 $ llwork, llwrkn, lwmin, nsplit,
412 $ lhtrd, lwtrd, kd, ib, indhous
413 REAL ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
414 $ SIGMA, SMLNUM, TMP1, VLL, VUU
415* ..
416* .. External Functions ..
417 LOGICAL LSAME
418 INTEGER ILAENV, ILAENV2STAGE
419 REAL SLAMCH, SLANSY, SROUNDUP_LWORK
420 EXTERNAL lsame, slamch, slansy, sroundup_lwork, ilaenv,
421 $ ilaenv2stage
422* ..
423* .. External Subroutines ..
424 EXTERNAL scopy, sormtr, sscal, sstebz, sstemr, sstein,
426* ..
427* .. Intrinsic Functions ..
428 INTRINSIC max, min, sqrt
429* ..
430* .. Executable Statements ..
431*
432* Test the input parameters.
433*
434 ieeeok = ilaenv( 10, 'SSYEVR', 'N', 1, 2, 3, 4 )
435*
436 lower = lsame( uplo, 'L' )
437 wantz = lsame( jobz, 'V' )
438 alleig = lsame( range, 'A' )
439 valeig = lsame( range, 'V' )
440 indeig = lsame( range, 'I' )
441*
442 lquery = ( ( lwork.EQ.-1 ) .OR. ( liwork.EQ.-1 ) )
443*
444 kd = ilaenv2stage( 1, 'SSYTRD_2STAGE', jobz, n, -1, -1, -1 )
445 ib = ilaenv2stage( 2, 'SSYTRD_2STAGE', jobz, n, kd, -1, -1 )
446 lhtrd = ilaenv2stage( 3, 'SSYTRD_2STAGE', jobz, n, kd, ib, -1 )
447 lwtrd = ilaenv2stage( 4, 'SSYTRD_2STAGE', jobz, n, kd, ib, -1 )
448 lwmin = max( 26*n, 5*n + lhtrd + lwtrd )
449 liwmin = max( 1, 10*n )
450*
451 info = 0
452 IF( .NOT.( lsame( jobz, 'N' ) ) ) THEN
453 info = -1
454 ELSE IF( .NOT.( alleig .OR. valeig .OR. indeig ) ) THEN
455 info = -2
456 ELSE IF( .NOT.( lower .OR. lsame( uplo, 'U' ) ) ) THEN
457 info = -3
458 ELSE IF( n.LT.0 ) THEN
459 info = -4
460 ELSE IF( lda.LT.max( 1, n ) ) THEN
461 info = -6
462 ELSE
463 IF( valeig ) THEN
464 IF( n.GT.0 .AND. vu.LE.vl )
465 $ info = -8
466 ELSE IF( indeig ) THEN
467 IF( il.LT.1 .OR. il.GT.max( 1, n ) ) THEN
468 info = -9
469 ELSE IF( iu.LT.min( n, il ) .OR. iu.GT.n ) THEN
470 info = -10
471 END IF
472 END IF
473 END IF
474 IF( info.EQ.0 ) THEN
475 IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.n ) ) THEN
476 info = -15
477 ELSE IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
478 info = -18
479 ELSE IF( liwork.LT.liwmin .AND. .NOT.lquery ) THEN
480 info = -20
481 END IF
482 END IF
483*
484 IF( info.EQ.0 ) THEN
485* NB = ILAENV( 1, 'SSYTRD', UPLO, N, -1, -1, -1 )
486* NB = MAX( NB, ILAENV( 1, 'SORMTR', UPLO, N, -1, -1, -1 ) )
487* LWKOPT = MAX( ( NB+1 )*N, LWMIN )
488 work( 1 ) = sroundup_lwork(lwmin)
489 iwork( 1 ) = liwmin
490 END IF
491*
492 IF( info.NE.0 ) THEN
493 CALL xerbla( 'SSYEVR_2STAGE', -info )
494 RETURN
495 ELSE IF( lquery ) THEN
496 RETURN
497 END IF
498*
499* Quick return if possible
500*
501 m = 0
502 IF( n.EQ.0 ) THEN
503 work( 1 ) = 1
504 RETURN
505 END IF
506*
507 IF( n.EQ.1 ) THEN
508 work( 1 ) = 26
509 IF( alleig .OR. indeig ) THEN
510 m = 1
511 w( 1 ) = a( 1, 1 )
512 ELSE
513 IF( vl.LT.a( 1, 1 ) .AND. vu.GE.a( 1, 1 ) ) THEN
514 m = 1
515 w( 1 ) = a( 1, 1 )
516 END IF
517 END IF
518 IF( wantz ) THEN
519 z( 1, 1 ) = one
520 isuppz( 1 ) = 1
521 isuppz( 2 ) = 1
522 END IF
523 RETURN
524 END IF
525*
526* Get machine constants.
527*
528 safmin = slamch( 'Safe minimum' )
529 eps = slamch( 'Precision' )
530 smlnum = safmin / eps
531 bignum = one / smlnum
532 rmin = sqrt( smlnum )
533 rmax = min( sqrt( bignum ), one / sqrt( sqrt( safmin ) ) )
534*
535* Scale matrix to allowable range, if necessary.
536*
537 iscale = 0
538 abstll = abstol
539 IF (valeig) THEN
540 vll = vl
541 vuu = vu
542 END IF
543 anrm = slansy( 'M', uplo, n, a, lda, work )
544 IF( anrm.GT.zero .AND. anrm.LT.rmin ) THEN
545 iscale = 1
546 sigma = rmin / anrm
547 ELSE IF( anrm.GT.rmax ) THEN
548 iscale = 1
549 sigma = rmax / anrm
550 END IF
551 IF( iscale.EQ.1 ) THEN
552 IF( lower ) THEN
553 DO 10 j = 1, n
554 CALL sscal( n-j+1, sigma, a( j, j ), 1 )
555 10 CONTINUE
556 ELSE
557 DO 20 j = 1, n
558 CALL sscal( j, sigma, a( 1, j ), 1 )
559 20 CONTINUE
560 END IF
561 IF( abstol.GT.0 )
562 $ abstll = abstol*sigma
563 IF( valeig ) THEN
564 vll = vl*sigma
565 vuu = vu*sigma
566 END IF
567 END IF
568
569* Initialize indices into workspaces. Note: The IWORK indices are
570* used only if SSTERF or SSTEMR fail.
571
572* WORK(INDTAU:INDTAU+N-1) stores the scalar factors of the
573* elementary reflectors used in SSYTRD.
574 indtau = 1
575* WORK(INDD:INDD+N-1) stores the tridiagonal's diagonal entries.
576 indd = indtau + n
577* WORK(INDE:INDE+N-1) stores the off-diagonal entries of the
578* tridiagonal matrix from SSYTRD.
579 inde = indd + n
580* WORK(INDDD:INDDD+N-1) is a copy of the diagonal entries over
581* -written by SSTEMR (the SSTERF path copies the diagonal to W).
582 inddd = inde + n
583* WORK(INDEE:INDEE+N-1) is a copy of the off-diagonal entries over
584* -written while computing the eigenvalues in SSTERF and SSTEMR.
585 indee = inddd + n
586* INDHOUS is the starting offset Householder storage of stage 2
587 indhous = indee + n
588* INDWK is the starting offset of the left-over workspace, and
589* LLWORK is the remaining workspace size.
590 indwk = indhous + lhtrd
591 llwork = lwork - indwk + 1
592
593
594* IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in SSTEBZ and
595* stores the block indices of each of the M<=N eigenvalues.
596 indibl = 1
597* IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in SSTEBZ and
598* stores the starting and finishing indices of each block.
599 indisp = indibl + n
600* IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors
601* that corresponding to eigenvectors that fail to converge in
602* SSTEIN. This information is discarded; if any fail, the driver
603* returns INFO > 0.
604 indifl = indisp + n
605* INDIWO is the offset of the remaining integer workspace.
606 indiwo = indifl + n
607
608*
609* Call SSYTRD_2STAGE to reduce symmetric matrix to tridiagonal form.
610*
611*
612 CALL ssytrd_2stage( jobz, uplo, n, a, lda, work( indd ),
613 $ work( inde ), work( indtau ), work( indhous ),
614 $ lhtrd, work( indwk ), llwork, iinfo )
615*
616* If all eigenvalues are desired
617* then call SSTERF or SSTEMR and SORMTR.
618*
619 test = .false.
620 IF( indeig ) THEN
621 IF( il.EQ.1 .AND. iu.EQ.n ) THEN
622 test = .true.
623 END IF
624 END IF
625 IF( ( alleig.OR.test ) .AND. ( ieeeok.EQ.1 ) ) THEN
626 IF( .NOT.wantz ) THEN
627 CALL scopy( n, work( indd ), 1, w, 1 )
628 CALL scopy( n-1, work( inde ), 1, work( indee ), 1 )
629 CALL ssterf( n, w, work( indee ), info )
630 ELSE
631 CALL scopy( n-1, work( inde ), 1, work( indee ), 1 )
632 CALL scopy( n, work( indd ), 1, work( inddd ), 1 )
633*
634 IF (abstol .LE. two*n*eps) THEN
635 tryrac = .true.
636 ELSE
637 tryrac = .false.
638 END IF
639 CALL sstemr( jobz, 'A', n, work( inddd ), work( indee ),
640 $ vl, vu, il, iu, m, w, z, ldz, n, isuppz,
641 $ tryrac, work( indwk ), lwork, iwork, liwork,
642 $ info )
643*
644*
645*
646* Apply orthogonal matrix used in reduction to tridiagonal
647* form to eigenvectors returned by SSTEMR.
648*
649 IF( wantz .AND. info.EQ.0 ) THEN
650 indwkn = inde
651 llwrkn = lwork - indwkn + 1
652 CALL sormtr( 'L', uplo, 'N', n, m, a, lda,
653 $ work( indtau ), z, ldz, work( indwkn ),
654 $ llwrkn, iinfo )
655 END IF
656 END IF
657*
658*
659 IF( info.EQ.0 ) THEN
660* Everything worked. Skip SSTEBZ/SSTEIN. IWORK(:) are
661* undefined.
662 m = n
663 GO TO 30
664 END IF
665 info = 0
666 END IF
667*
668* Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN.
669* Also call SSTEBZ and SSTEIN if SSTEMR fails.
670*
671 IF( wantz ) THEN
672 order = 'B'
673 ELSE
674 order = 'E'
675 END IF
676
677 CALL sstebz( range, order, n, vll, vuu, il, iu, abstll,
678 $ work( indd ), work( inde ), m, nsplit, w,
679 $ iwork( indibl ), iwork( indisp ), work( indwk ),
680 $ iwork( indiwo ), info )
681*
682 IF( wantz ) THEN
683 CALL sstein( n, work( indd ), work( inde ), m, w,
684 $ iwork( indibl ), iwork( indisp ), z, ldz,
685 $ work( indwk ), iwork( indiwo ), iwork( indifl ),
686 $ info )
687*
688* Apply orthogonal matrix used in reduction to tridiagonal
689* form to eigenvectors returned by SSTEIN.
690*
691 indwkn = inde
692 llwrkn = lwork - indwkn + 1
693 CALL sormtr( 'L', uplo, 'N', n, m, a, lda, work( indtau ), z,
694 $ ldz, work( indwkn ), llwrkn, iinfo )
695 END IF
696*
697* If matrix was scaled, then rescale eigenvalues appropriately.
698*
699* Jump here if SSTEMR/SSTEIN succeeded.
700 30 CONTINUE
701 IF( iscale.EQ.1 ) THEN
702 IF( info.EQ.0 ) THEN
703 imax = m
704 ELSE
705 imax = info - 1
706 END IF
707 CALL sscal( imax, one / sigma, w, 1 )
708 END IF
709*
710* If eigenvalues are not in order, then sort them, along with
711* eigenvectors. Note: We do not sort the IFAIL portion of IWORK.
712* It may not be initialized (if SSTEMR/SSTEIN succeeded), and we do
713* not return this detailed information to the user.
714*
715 IF( wantz ) THEN
716 DO 50 j = 1, m - 1
717 i = 0
718 tmp1 = w( j )
719 DO 40 jj = j + 1, m
720 IF( w( jj ).LT.tmp1 ) THEN
721 i = jj
722 tmp1 = w( jj )
723 END IF
724 40 CONTINUE
725*
726 IF( i.NE.0 ) THEN
727 w( i ) = w( j )
728 w( j ) = tmp1
729 CALL sswap( n, z( 1, i ), 1, z( 1, j ), 1 )
730 END IF
731 50 CONTINUE
732 END IF
733*
734* Set WORK(1) to optimal workspace size.
735*
736 work( 1 ) = sroundup_lwork(lwmin)
737 iwork( 1 ) = liwmin
738*
739 RETURN
740*
741* End of SSYEVR_2STAGE
742*
743 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine scopy(n, sx, incx, sy, incy)
SCOPY
Definition scopy.f:82
subroutine ssyevr_2stage(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz, isuppz, work, lwork, iwork, liwork, info)
SSYEVR_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY mat...
subroutine ssytrd_2stage(vect, uplo, n, a, lda, d, e, tau, hous2, lhous2, work, lwork, info)
SSYTRD_2STAGE
subroutine sscal(n, sa, sx, incx)
SSCAL
Definition sscal.f:79
subroutine sstebz(range, order, n, vl, vu, il, iu, abstol, d, e, m, nsplit, w, iblock, isplit, work, iwork, info)
SSTEBZ
Definition sstebz.f:273
subroutine sstein(n, d, e, m, w, iblock, isplit, z, ldz, work, iwork, ifail, info)
SSTEIN
Definition sstein.f:174
subroutine sstemr(jobz, range, n, d, e, vl, vu, il, iu, m, w, z, ldz, nzc, isuppz, tryrac, work, lwork, iwork, liwork, info)
SSTEMR
Definition sstemr.f:322
subroutine ssterf(n, d, e, info)
SSTERF
Definition ssterf.f:86
subroutine sswap(n, sx, incx, sy, incy)
SSWAP
Definition sswap.f:82
subroutine sormtr(side, uplo, trans, m, n, a, lda, tau, c, ldc, work, lwork, info)
SORMTR
Definition sormtr.f:172