LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zptsv()

subroutine zptsv ( integer n,
integer nrhs,
double precision, dimension( * ) d,
complex*16, dimension( * ) e,
complex*16, dimension( ldb, * ) b,
integer ldb,
integer info )

ZPTSV computes the solution to system of linear equations A * X = B for PT matrices

Download ZPTSV + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> ZPTSV computes the solution to a complex system of linear equations
!> A*X = B, where A is an N-by-N Hermitian positive definite tridiagonal
!> matrix, and X and B are N-by-NRHS matrices.
!>
!> A is factored as A = L*D*L**H, and the factored form of A is then
!> used to solve the system of equations.
!> 
Parameters
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrix B.  NRHS >= 0.
!> 
[in,out]D
!>          D is DOUBLE PRECISION array, dimension (N)
!>          On entry, the n diagonal elements of the tridiagonal matrix
!>          A.  On exit, the n diagonal elements of the diagonal matrix
!>          D from the factorization A = L*D*L**H.
!> 
[in,out]E
!>          E is COMPLEX*16 array, dimension (N-1)
!>          On entry, the (n-1) subdiagonal elements of the tridiagonal
!>          matrix A.  On exit, the (n-1) subdiagonal elements of the
!>          unit bidiagonal factor L from the L*D*L**H factorization of
!>          A.  E can also be regarded as the superdiagonal of the unit
!>          bidiagonal factor U from the U**H*D*U factorization of A.
!> 
[in,out]B
!>          B is COMPLEX*16 array, dimension (LDB,NRHS)
!>          On entry, the N-by-NRHS right hand side matrix B.
!>          On exit, if INFO = 0, the N-by-NRHS solution matrix X.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  if INFO = i, the leading principal minor of order i
!>                is not positive, and the solution has not been
!>                computed.  The factorization has not been completed
!>                unless i = N.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 112 of file zptsv.f.

113*
114* -- LAPACK driver routine --
115* -- LAPACK is a software package provided by Univ. of Tennessee, --
116* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
117*
118* .. Scalar Arguments ..
119 INTEGER INFO, LDB, N, NRHS
120* ..
121* .. Array Arguments ..
122 DOUBLE PRECISION D( * )
123 COMPLEX*16 B( LDB, * ), E( * )
124* ..
125*
126* =====================================================================
127*
128* .. External Subroutines ..
129 EXTERNAL xerbla, zpttrf, zpttrs
130* ..
131* .. Intrinsic Functions ..
132 INTRINSIC max
133* ..
134* .. Executable Statements ..
135*
136* Test the input parameters.
137*
138 info = 0
139 IF( n.LT.0 ) THEN
140 info = -1
141 ELSE IF( nrhs.LT.0 ) THEN
142 info = -2
143 ELSE IF( ldb.LT.max( 1, n ) ) THEN
144 info = -6
145 END IF
146 IF( info.NE.0 ) THEN
147 CALL xerbla( 'ZPTSV ', -info )
148 RETURN
149 END IF
150*
151* Compute the L*D*L**H (or U**H*D*U) factorization of A.
152*
153 CALL zpttrf( n, d, e, info )
154 IF( info.EQ.0 ) THEN
155*
156* Solve the system A*X = B, overwriting B with X.
157*
158 CALL zpttrs( 'Lower', n, nrhs, d, e, b, ldb, info )
159 END IF
160 RETURN
161*
162* End of ZPTSV
163*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zpttrf(n, d, e, info)
ZPTTRF
Definition zpttrf.f:90
subroutine zpttrs(uplo, n, nrhs, d, e, b, ldb, info)
ZPTTRS
Definition zpttrs.f:119
Here is the call graph for this function:
Here is the caller graph for this function: