LAPACK 3.11.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zlaqr5.f
Go to the documentation of this file.
1*> \brief \b ZLAQR5 performs a single small-bulge multi-shift QR sweep.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZLAQR5 + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaqr5.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaqr5.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaqr5.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE ZLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS, S,
22* H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U, LDU, NV,
23* WV, LDWV, NH, WH, LDWH )
24*
25* .. Scalar Arguments ..
26* INTEGER IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV,
27* $ LDWH, LDWV, LDZ, N, NH, NSHFTS, NV
28* LOGICAL WANTT, WANTZ
29* ..
30* .. Array Arguments ..
31* COMPLEX*16 H( LDH, * ), S( * ), U( LDU, * ), V( LDV, * ),
32* $ WH( LDWH, * ), WV( LDWV, * ), Z( LDZ, * )
33* ..
34*
35*
36*> \par Purpose:
37* =============
38*>
39*> \verbatim
40*>
41*> ZLAQR5, called by ZLAQR0, performs a
42*> single small-bulge multi-shift QR sweep.
43*> \endverbatim
44*
45* Arguments:
46* ==========
47*
48*> \param[in] WANTT
49*> \verbatim
50*> WANTT is LOGICAL
51*> WANTT = .true. if the triangular Schur factor
52*> is being computed. WANTT is set to .false. otherwise.
53*> \endverbatim
54*>
55*> \param[in] WANTZ
56*> \verbatim
57*> WANTZ is LOGICAL
58*> WANTZ = .true. if the unitary Schur factor is being
59*> computed. WANTZ is set to .false. otherwise.
60*> \endverbatim
61*>
62*> \param[in] KACC22
63*> \verbatim
64*> KACC22 is INTEGER with value 0, 1, or 2.
65*> Specifies the computation mode of far-from-diagonal
66*> orthogonal updates.
67*> = 0: ZLAQR5 does not accumulate reflections and does not
68*> use matrix-matrix multiply to update far-from-diagonal
69*> matrix entries.
70*> = 1: ZLAQR5 accumulates reflections and uses matrix-matrix
71*> multiply to update the far-from-diagonal matrix entries.
72*> = 2: Same as KACC22 = 1. This option used to enable exploiting
73*> the 2-by-2 structure during matrix multiplications, but
74*> this is no longer supported.
75*> \endverbatim
76*>
77*> \param[in] N
78*> \verbatim
79*> N is INTEGER
80*> N is the order of the Hessenberg matrix H upon which this
81*> subroutine operates.
82*> \endverbatim
83*>
84*> \param[in] KTOP
85*> \verbatim
86*> KTOP is INTEGER
87*> \endverbatim
88*>
89*> \param[in] KBOT
90*> \verbatim
91*> KBOT is INTEGER
92*> These are the first and last rows and columns of an
93*> isolated diagonal block upon which the QR sweep is to be
94*> applied. It is assumed without a check that
95*> either KTOP = 1 or H(KTOP,KTOP-1) = 0
96*> and
97*> either KBOT = N or H(KBOT+1,KBOT) = 0.
98*> \endverbatim
99*>
100*> \param[in] NSHFTS
101*> \verbatim
102*> NSHFTS is INTEGER
103*> NSHFTS gives the number of simultaneous shifts. NSHFTS
104*> must be positive and even.
105*> \endverbatim
106*>
107*> \param[in,out] S
108*> \verbatim
109*> S is COMPLEX*16 array, dimension (NSHFTS)
110*> S contains the shifts of origin that define the multi-
111*> shift QR sweep. On output S may be reordered.
112*> \endverbatim
113*>
114*> \param[in,out] H
115*> \verbatim
116*> H is COMPLEX*16 array, dimension (LDH,N)
117*> On input H contains a Hessenberg matrix. On output a
118*> multi-shift QR sweep with shifts SR(J)+i*SI(J) is applied
119*> to the isolated diagonal block in rows and columns KTOP
120*> through KBOT.
121*> \endverbatim
122*>
123*> \param[in] LDH
124*> \verbatim
125*> LDH is INTEGER
126*> LDH is the leading dimension of H just as declared in the
127*> calling procedure. LDH >= MAX(1,N).
128*> \endverbatim
129*>
130*> \param[in] ILOZ
131*> \verbatim
132*> ILOZ is INTEGER
133*> \endverbatim
134*>
135*> \param[in] IHIZ
136*> \verbatim
137*> IHIZ is INTEGER
138*> Specify the rows of Z to which transformations must be
139*> applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N
140*> \endverbatim
141*>
142*> \param[in,out] Z
143*> \verbatim
144*> Z is COMPLEX*16 array, dimension (LDZ,IHIZ)
145*> If WANTZ = .TRUE., then the QR Sweep unitary
146*> similarity transformation is accumulated into
147*> Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right.
148*> If WANTZ = .FALSE., then Z is unreferenced.
149*> \endverbatim
150*>
151*> \param[in] LDZ
152*> \verbatim
153*> LDZ is INTEGER
154*> LDA is the leading dimension of Z just as declared in
155*> the calling procedure. LDZ >= N.
156*> \endverbatim
157*>
158*> \param[out] V
159*> \verbatim
160*> V is COMPLEX*16 array, dimension (LDV,NSHFTS/2)
161*> \endverbatim
162*>
163*> \param[in] LDV
164*> \verbatim
165*> LDV is INTEGER
166*> LDV is the leading dimension of V as declared in the
167*> calling procedure. LDV >= 3.
168*> \endverbatim
169*>
170*> \param[out] U
171*> \verbatim
172*> U is COMPLEX*16 array, dimension (LDU,2*NSHFTS)
173*> \endverbatim
174*>
175*> \param[in] LDU
176*> \verbatim
177*> LDU is INTEGER
178*> LDU is the leading dimension of U just as declared in the
179*> in the calling subroutine. LDU >= 2*NSHFTS.
180*> \endverbatim
181*>
182*> \param[in] NV
183*> \verbatim
184*> NV is INTEGER
185*> NV is the number of rows in WV agailable for workspace.
186*> NV >= 1.
187*> \endverbatim
188*>
189*> \param[out] WV
190*> \verbatim
191*> WV is COMPLEX*16 array, dimension (LDWV,2*NSHFTS)
192*> \endverbatim
193*>
194*> \param[in] LDWV
195*> \verbatim
196*> LDWV is INTEGER
197*> LDWV is the leading dimension of WV as declared in the
198*> in the calling subroutine. LDWV >= NV.
199*> \endverbatim
200*
201*> \param[in] NH
202*> \verbatim
203*> NH is INTEGER
204*> NH is the number of columns in array WH available for
205*> workspace. NH >= 1.
206*> \endverbatim
207*>
208*> \param[out] WH
209*> \verbatim
210*> WH is COMPLEX*16 array, dimension (LDWH,NH)
211*> \endverbatim
212*>
213*> \param[in] LDWH
214*> \verbatim
215*> LDWH is INTEGER
216*> Leading dimension of WH just as declared in the
217*> calling procedure. LDWH >= 2*NSHFTS.
218*> \endverbatim
219*>
220* Authors:
221* ========
222*
223*> \author Univ. of Tennessee
224*> \author Univ. of California Berkeley
225*> \author Univ. of Colorado Denver
226*> \author NAG Ltd.
227*
228*> \ingroup complex16OTHERauxiliary
229*
230*> \par Contributors:
231* ==================
232*>
233*> Karen Braman and Ralph Byers, Department of Mathematics,
234*> University of Kansas, USA
235*>
236*> Lars Karlsson, Daniel Kressner, and Bruno Lang
237*>
238*> Thijs Steel, Department of Computer science,
239*> KU Leuven, Belgium
240*
241*> \par References:
242* ================
243*>
244*> K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
245*> Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
246*> Performance, SIAM Journal of Matrix Analysis, volume 23, pages
247*> 929--947, 2002.
248*>
249*> Lars Karlsson, Daniel Kressner, and Bruno Lang, Optimally packed
250*> chains of bulges in multishift QR algorithms.
251*> ACM Trans. Math. Softw. 40, 2, Article 12 (February 2014).
252*>
253* =====================================================================
254 SUBROUTINE zlaqr5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS, S,
255 $ H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U, LDU, NV,
256 $ WV, LDWV, NH, WH, LDWH )
257 IMPLICIT NONE
258*
259* -- LAPACK auxiliary routine --
260* -- LAPACK is a software package provided by Univ. of Tennessee, --
261* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
262*
263* .. Scalar Arguments ..
264 INTEGER IHIZ, ILOZ, KACC22, KBOT, KTOP, LDH, LDU, LDV,
265 $ LDWH, LDWV, LDZ, N, NH, NSHFTS, NV
266 LOGICAL WANTT, WANTZ
267* ..
268* .. Array Arguments ..
269 COMPLEX*16 H( LDH, * ), S( * ), U( LDU, * ), V( LDV, * ),
270 $ WH( LDWH, * ), WV( LDWV, * ), Z( LDZ, * )
271* ..
272*
273* ================================================================
274* .. Parameters ..
275 COMPLEX*16 ZERO, ONE
276 PARAMETER ( ZERO = ( 0.0d0, 0.0d0 ),
277 $ one = ( 1.0d0, 0.0d0 ) )
278 DOUBLE PRECISION RZERO, RONE
279 PARAMETER ( RZERO = 0.0d0, rone = 1.0d0 )
280* ..
281* .. Local Scalars ..
282 COMPLEX*16 ALPHA, BETA, CDUM, REFSUM, T1, T2, T3
283 DOUBLE PRECISION H11, H12, H21, H22, SAFMAX, SAFMIN, SCL,
284 $ smlnum, tst1, tst2, ulp
285 INTEGER I2, I4, INCOL, J, JBOT, JCOL, JLEN,
286 $ JROW, JTOP, K, K1, KDU, KMS, KRCOL,
287 $ m, m22, mbot, mtop, nbmps, ndcol,
288 $ ns, nu
289 LOGICAL ACCUM, BMP22
290* ..
291* .. External Functions ..
292 DOUBLE PRECISION DLAMCH
293 EXTERNAL DLAMCH
294* ..
295* .. Intrinsic Functions ..
296*
297 INTRINSIC abs, dble, dconjg, dimag, max, min, mod
298* ..
299* .. Local Arrays ..
300 COMPLEX*16 VT( 3 )
301* ..
302* .. External Subroutines ..
303 EXTERNAL dlabad, zgemm, zlacpy, zlaqr1, zlarfg, zlaset,
304 $ ztrmm
305* ..
306* .. Statement Functions ..
307 DOUBLE PRECISION CABS1
308* ..
309* .. Statement Function definitions ..
310 cabs1( cdum ) = abs( dble( cdum ) ) + abs( dimag( cdum ) )
311* ..
312* .. Executable Statements ..
313*
314* ==== If there are no shifts, then there is nothing to do. ====
315*
316 IF( nshfts.LT.2 )
317 $ RETURN
318*
319* ==== If the active block is empty or 1-by-1, then there
320* . is nothing to do. ====
321*
322 IF( ktop.GE.kbot )
323 $ RETURN
324*
325* ==== NSHFTS is supposed to be even, but if it is odd,
326* . then simply reduce it by one. ====
327*
328 ns = nshfts - mod( nshfts, 2 )
329*
330* ==== Machine constants for deflation ====
331*
332 safmin = dlamch( 'SAFE MINIMUM' )
333 safmax = rone / safmin
334 CALL dlabad( safmin, safmax )
335 ulp = dlamch( 'PRECISION' )
336 smlnum = safmin*( dble( n ) / ulp )
337*
338* ==== Use accumulated reflections to update far-from-diagonal
339* . entries ? ====
340*
341 accum = ( kacc22.EQ.1 ) .OR. ( kacc22.EQ.2 )
342*
343* ==== clear trash ====
344*
345 IF( ktop+2.LE.kbot )
346 $ h( ktop+2, ktop ) = zero
347*
348* ==== NBMPS = number of 2-shift bulges in the chain ====
349*
350 nbmps = ns / 2
351*
352* ==== KDU = width of slab ====
353*
354 kdu = 4*nbmps
355*
356* ==== Create and chase chains of NBMPS bulges ====
357*
358 DO 180 incol = ktop - 2*nbmps + 1, kbot - 2, 2*nbmps
359*
360* JTOP = Index from which updates from the right start.
361*
362 IF( accum ) THEN
363 jtop = max( ktop, incol )
364 ELSE IF( wantt ) THEN
365 jtop = 1
366 ELSE
367 jtop = ktop
368 END IF
369*
370 ndcol = incol + kdu
371 IF( accum )
372 $ CALL zlaset( 'ALL', kdu, kdu, zero, one, u, ldu )
373*
374* ==== Near-the-diagonal bulge chase. The following loop
375* . performs the near-the-diagonal part of a small bulge
376* . multi-shift QR sweep. Each 4*NBMPS column diagonal
377* . chunk extends from column INCOL to column NDCOL
378* . (including both column INCOL and column NDCOL). The
379* . following loop chases a 2*NBMPS+1 column long chain of
380* . NBMPS bulges 2*NBMPS columns to the right. (INCOL
381* . may be less than KTOP and and NDCOL may be greater than
382* . KBOT indicating phantom columns from which to chase
383* . bulges before they are actually introduced or to which
384* . to chase bulges beyond column KBOT.) ====
385*
386 DO 145 krcol = incol, min( incol+2*nbmps-1, kbot-2 )
387*
388* ==== Bulges number MTOP to MBOT are active double implicit
389* . shift bulges. There may or may not also be small
390* . 2-by-2 bulge, if there is room. The inactive bulges
391* . (if any) must wait until the active bulges have moved
392* . down the diagonal to make room. The phantom matrix
393* . paradigm described above helps keep track. ====
394*
395 mtop = max( 1, ( ktop-krcol ) / 2+1 )
396 mbot = min( nbmps, ( kbot-krcol-1 ) / 2 )
397 m22 = mbot + 1
398 bmp22 = ( mbot.LT.nbmps ) .AND. ( krcol+2*( m22-1 ) ).EQ.
399 $ ( kbot-2 )
400*
401* ==== Generate reflections to chase the chain right
402* . one column. (The minimum value of K is KTOP-1.) ====
403*
404 IF ( bmp22 ) THEN
405*
406* ==== Special case: 2-by-2 reflection at bottom treated
407* . separately ====
408*
409 k = krcol + 2*( m22-1 )
410 IF( k.EQ.ktop-1 ) THEN
411 CALL zlaqr1( 2, h( k+1, k+1 ), ldh, s( 2*m22-1 ),
412 $ s( 2*m22 ), v( 1, m22 ) )
413 beta = v( 1, m22 )
414 CALL zlarfg( 2, beta, v( 2, m22 ), 1, v( 1, m22 ) )
415 ELSE
416 beta = h( k+1, k )
417 v( 2, m22 ) = h( k+2, k )
418 CALL zlarfg( 2, beta, v( 2, m22 ), 1, v( 1, m22 ) )
419 h( k+1, k ) = beta
420 h( k+2, k ) = zero
421 END IF
422
423*
424* ==== Perform update from right within
425* . computational window. ====
426*
427 t1 = v( 1, m22 )
428 t2 = t1*dconjg( v( 2, m22 ) )
429 DO 30 j = jtop, min( kbot, k+3 )
430 refsum = h( j, k+1 ) + v( 2, m22 )*h( j, k+2 )
431 h( j, k+1 ) = h( j, k+1 ) - refsum*t1
432 h( j, k+2 ) = h( j, k+2 ) - refsum*t2
433 30 CONTINUE
434*
435* ==== Perform update from left within
436* . computational window. ====
437*
438 IF( accum ) THEN
439 jbot = min( ndcol, kbot )
440 ELSE IF( wantt ) THEN
441 jbot = n
442 ELSE
443 jbot = kbot
444 END IF
445 t1 = dconjg( v( 1, m22 ) )
446 t2 = t1*v( 2, m22 )
447 DO 40 j = k+1, jbot
448 refsum = h( k+1, j ) +
449 $ dconjg( v( 2, m22 ) )*h( k+2, j )
450 h( k+1, j ) = h( k+1, j ) - refsum*t1
451 h( k+2, j ) = h( k+2, j ) - refsum*t2
452 40 CONTINUE
453*
454* ==== The following convergence test requires that
455* . the tradition small-compared-to-nearby-diagonals
456* . criterion and the Ahues & Tisseur (LAWN 122, 1997)
457* . criteria both be satisfied. The latter improves
458* . accuracy in some examples. Falling back on an
459* . alternate convergence criterion when TST1 or TST2
460* . is zero (as done here) is traditional but probably
461* . unnecessary. ====
462*
463 IF( k.GE.ktop ) THEN
464 IF( h( k+1, k ).NE.zero ) THEN
465 tst1 = cabs1( h( k, k ) ) + cabs1( h( k+1, k+1 ) )
466 IF( tst1.EQ.rzero ) THEN
467 IF( k.GE.ktop+1 )
468 $ tst1 = tst1 + cabs1( h( k, k-1 ) )
469 IF( k.GE.ktop+2 )
470 $ tst1 = tst1 + cabs1( h( k, k-2 ) )
471 IF( k.GE.ktop+3 )
472 $ tst1 = tst1 + cabs1( h( k, k-3 ) )
473 IF( k.LE.kbot-2 )
474 $ tst1 = tst1 + cabs1( h( k+2, k+1 ) )
475 IF( k.LE.kbot-3 )
476 $ tst1 = tst1 + cabs1( h( k+3, k+1 ) )
477 IF( k.LE.kbot-4 )
478 $ tst1 = tst1 + cabs1( h( k+4, k+1 ) )
479 END IF
480 IF( cabs1( h( k+1, k ) )
481 $ .LE.max( smlnum, ulp*tst1 ) ) THEN
482 h12 = max( cabs1( h( k+1, k ) ),
483 $ cabs1( h( k, k+1 ) ) )
484 h21 = min( cabs1( h( k+1, k ) ),
485 $ cabs1( h( k, k+1 ) ) )
486 h11 = max( cabs1( h( k+1, k+1 ) ),
487 $ cabs1( h( k, k )-h( k+1, k+1 ) ) )
488 h22 = min( cabs1( h( k+1, k+1 ) ),
489 $ cabs1( h( k, k )-h( k+1, k+1 ) ) )
490 scl = h11 + h12
491 tst2 = h22*( h11 / scl )
492*
493 IF( tst2.EQ.rzero .OR. h21*( h12 / scl ).LE.
494 $ max( smlnum, ulp*tst2 ) )h( k+1, k ) = zero
495 END IF
496 END IF
497 END IF
498*
499* ==== Accumulate orthogonal transformations. ====
500*
501 IF( accum ) THEN
502 kms = k - incol
503 DO 50 j = max( 1, ktop-incol ), kdu
504 refsum = v( 1, m22 )*( u( j, kms+1 )+
505 $ v( 2, m22 )*u( j, kms+2 ) )
506 u( j, kms+1 ) = u( j, kms+1 ) - refsum
507 u( j, kms+2 ) = u( j, kms+2 ) -
508 $ refsum*dconjg( v( 2, m22 ) )
509 50 CONTINUE
510 ELSE IF( wantz ) THEN
511 DO 60 j = iloz, ihiz
512 refsum = v( 1, m22 )*( z( j, k+1 )+v( 2, m22 )*
513 $ z( j, k+2 ) )
514 z( j, k+1 ) = z( j, k+1 ) - refsum
515 z( j, k+2 ) = z( j, k+2 ) -
516 $ refsum*dconjg( v( 2, m22 ) )
517 60 CONTINUE
518 END IF
519 END IF
520*
521* ==== Normal case: Chain of 3-by-3 reflections ====
522*
523 DO 80 m = mbot, mtop, -1
524 k = krcol + 2*( m-1 )
525 IF( k.EQ.ktop-1 ) THEN
526 CALL zlaqr1( 3, h( ktop, ktop ), ldh, s( 2*m-1 ),
527 $ s( 2*m ), v( 1, m ) )
528 alpha = v( 1, m )
529 CALL zlarfg( 3, alpha, v( 2, m ), 1, v( 1, m ) )
530 ELSE
531*
532* ==== Perform delayed transformation of row below
533* . Mth bulge. Exploit fact that first two elements
534* . of row are actually zero. ====
535*
536 refsum = v( 1, m )*v( 3, m )*h( k+3, k+2 )
537 h( k+3, k ) = -refsum
538 h( k+3, k+1 ) = -refsum*dconjg( v( 2, m ) )
539 h( k+3, k+2 ) = h( k+3, k+2 ) -
540 $ refsum*dconjg( v( 3, m ) )
541*
542* ==== Calculate reflection to move
543* . Mth bulge one step. ====
544*
545 beta = h( k+1, k )
546 v( 2, m ) = h( k+2, k )
547 v( 3, m ) = h( k+3, k )
548 CALL zlarfg( 3, beta, v( 2, m ), 1, v( 1, m ) )
549*
550* ==== A Bulge may collapse because of vigilant
551* . deflation or destructive underflow. In the
552* . underflow case, try the two-small-subdiagonals
553* . trick to try to reinflate the bulge. ====
554*
555 IF( h( k+3, k ).NE.zero .OR. h( k+3, k+1 ).NE.
556 $ zero .OR. h( k+3, k+2 ).EQ.zero ) THEN
557*
558* ==== Typical case: not collapsed (yet). ====
559*
560 h( k+1, k ) = beta
561 h( k+2, k ) = zero
562 h( k+3, k ) = zero
563 ELSE
564*
565* ==== Atypical case: collapsed. Attempt to
566* . reintroduce ignoring H(K+1,K) and H(K+2,K).
567* . If the fill resulting from the new
568* . reflector is too large, then abandon it.
569* . Otherwise, use the new one. ====
570*
571 CALL zlaqr1( 3, h( k+1, k+1 ), ldh, s( 2*m-1 ),
572 $ s( 2*m ), vt )
573 alpha = vt( 1 )
574 CALL zlarfg( 3, alpha, vt( 2 ), 1, vt( 1 ) )
575 refsum = dconjg( vt( 1 ) )*
576 $ ( h( k+1, k )+dconjg( vt( 2 ) )*
577 $ h( k+2, k ) )
578*
579 IF( cabs1( h( k+2, k )-refsum*vt( 2 ) )+
580 $ cabs1( refsum*vt( 3 ) ).GT.ulp*
581 $ ( cabs1( h( k, k ) )+cabs1( h( k+1,
582 $ k+1 ) )+cabs1( h( k+2, k+2 ) ) ) ) THEN
583*
584* ==== Starting a new bulge here would
585* . create non-negligible fill. Use
586* . the old one with trepidation. ====
587*
588 h( k+1, k ) = beta
589 h( k+2, k ) = zero
590 h( k+3, k ) = zero
591 ELSE
592*
593* ==== Starting a new bulge here would
594* . create only negligible fill.
595* . Replace the old reflector with
596* . the new one. ====
597*
598 h( k+1, k ) = h( k+1, k ) - refsum
599 h( k+2, k ) = zero
600 h( k+3, k ) = zero
601 v( 1, m ) = vt( 1 )
602 v( 2, m ) = vt( 2 )
603 v( 3, m ) = vt( 3 )
604 END IF
605 END IF
606 END IF
607*
608* ==== Apply reflection from the right and
609* . the first column of update from the left.
610* . These updates are required for the vigilant
611* . deflation check. We still delay most of the
612* . updates from the left for efficiency. ====
613*
614 t1 = v( 1, m )
615 t2 = t1*dconjg( v( 2, m ) )
616 t3 = t1*dconjg( v( 3, m ) )
617 DO 70 j = jtop, min( kbot, k+3 )
618 refsum = h( j, k+1 ) + v( 2, m )*h( j, k+2 )
619 $ + v( 3, m )*h( j, k+3 )
620 h( j, k+1 ) = h( j, k+1 ) - refsum*t1
621 h( j, k+2 ) = h( j, k+2 ) - refsum*t2
622 h( j, k+3 ) = h( j, k+3 ) - refsum*t3
623 70 CONTINUE
624*
625* ==== Perform update from left for subsequent
626* . column. ====
627*
628 t1 = dconjg( v( 1, m ) )
629 t2 = t1*v( 2, m )
630 t3 = t1*v( 3, m )
631 refsum = h( k+1, k+1 )
632 $ + dconjg( v( 2, m ) )*h( k+2, k+1 )
633 $ + dconjg( v( 3, m ) )*h( k+3, k+1 )
634 h( k+1, k+1 ) = h( k+1, k+1 ) - refsum*t1
635 h( k+2, k+1 ) = h( k+2, k+1 ) - refsum*t2
636 h( k+3, k+1 ) = h( k+3, k+1 ) - refsum*t3
637*
638* ==== The following convergence test requires that
639* . the tradition small-compared-to-nearby-diagonals
640* . criterion and the Ahues & Tisseur (LAWN 122, 1997)
641* . criteria both be satisfied. The latter improves
642* . accuracy in some examples. Falling back on an
643* . alternate convergence criterion when TST1 or TST2
644* . is zero (as done here) is traditional but probably
645* . unnecessary. ====
646*
647 IF( k.LT.ktop)
648 $ cycle
649 IF( h( k+1, k ).NE.zero ) THEN
650 tst1 = cabs1( h( k, k ) ) + cabs1( h( k+1, k+1 ) )
651 IF( tst1.EQ.rzero ) THEN
652 IF( k.GE.ktop+1 )
653 $ tst1 = tst1 + cabs1( h( k, k-1 ) )
654 IF( k.GE.ktop+2 )
655 $ tst1 = tst1 + cabs1( h( k, k-2 ) )
656 IF( k.GE.ktop+3 )
657 $ tst1 = tst1 + cabs1( h( k, k-3 ) )
658 IF( k.LE.kbot-2 )
659 $ tst1 = tst1 + cabs1( h( k+2, k+1 ) )
660 IF( k.LE.kbot-3 )
661 $ tst1 = tst1 + cabs1( h( k+3, k+1 ) )
662 IF( k.LE.kbot-4 )
663 $ tst1 = tst1 + cabs1( h( k+4, k+1 ) )
664 END IF
665 IF( cabs1( h( k+1, k ) ).LE.max( smlnum, ulp*tst1 ) )
666 $ THEN
667 h12 = max( cabs1( h( k+1, k ) ),
668 $ cabs1( h( k, k+1 ) ) )
669 h21 = min( cabs1( h( k+1, k ) ),
670 $ cabs1( h( k, k+1 ) ) )
671 h11 = max( cabs1( h( k+1, k+1 ) ),
672 $ cabs1( h( k, k )-h( k+1, k+1 ) ) )
673 h22 = min( cabs1( h( k+1, k+1 ) ),
674 $ cabs1( h( k, k )-h( k+1, k+1 ) ) )
675 scl = h11 + h12
676 tst2 = h22*( h11 / scl )
677*
678 IF( tst2.EQ.rzero .OR. h21*( h12 / scl ).LE.
679 $ max( smlnum, ulp*tst2 ) )h( k+1, k ) = zero
680 END IF
681 END IF
682 80 CONTINUE
683*
684* ==== Multiply H by reflections from the left ====
685*
686 IF( accum ) THEN
687 jbot = min( ndcol, kbot )
688 ELSE IF( wantt ) THEN
689 jbot = n
690 ELSE
691 jbot = kbot
692 END IF
693*
694 DO 100 m = mbot, mtop, -1
695 k = krcol + 2*( m-1 )
696 t1 = dconjg( v( 1, m ) )
697 t2 = t1*v( 2, m )
698 t3 = t1*v( 3, m )
699 DO 90 j = max( ktop, krcol + 2*m ), jbot
700 refsum = h( k+1, j ) + dconjg( v( 2, m ) )*h( k+2, j )
701 $ + dconjg( v( 3, m ) )*h( k+3, j )
702 h( k+1, j ) = h( k+1, j ) - refsum*t1
703 h( k+2, j ) = h( k+2, j ) - refsum*t2
704 h( k+3, j ) = h( k+3, j ) - refsum*t3
705 90 CONTINUE
706 100 CONTINUE
707*
708* ==== Accumulate orthogonal transformations. ====
709*
710 IF( accum ) THEN
711*
712* ==== Accumulate U. (If needed, update Z later
713* . with an efficient matrix-matrix
714* . multiply.) ====
715*
716 DO 120 m = mbot, mtop, -1
717 k = krcol + 2*( m-1 )
718 kms = k - incol
719 i2 = max( 1, ktop-incol )
720 i2 = max( i2, kms-(krcol-incol)+1 )
721 i4 = min( kdu, krcol + 2*( mbot-1 ) - incol + 5 )
722 t1 = v( 1, m )
723 t2 = t1*dconjg( v( 2, m ) )
724 t3 = t1*dconjg( v( 3, m ) )
725 DO 110 j = i2, i4
726 refsum = u( j, kms+1 ) + v( 2, m )*u( j, kms+2 )
727 $ + v( 3, m )*u( j, kms+3 )
728 u( j, kms+1 ) = u( j, kms+1 ) - refsum*t1
729 u( j, kms+2 ) = u( j, kms+2 ) - refsum*t2
730 u( j, kms+3 ) = u( j, kms+3 ) - refsum*t3
731 110 CONTINUE
732 120 CONTINUE
733 ELSE IF( wantz ) THEN
734*
735* ==== U is not accumulated, so update Z
736* . now by multiplying by reflections
737* . from the right. ====
738*
739 DO 140 m = mbot, mtop, -1
740 k = krcol + 2*( m-1 )
741 t1 = v( 1, m )
742 t2 = t1*dconjg( v( 2, m ) )
743 t3 = t1*dconjg( v( 3, m ) )
744 DO 130 j = iloz, ihiz
745 refsum = z( j, k+1 ) + v( 2, m )*z( j, k+2 )
746 $ + v( 3, m )*z( j, k+3 )
747 z( j, k+1 ) = z( j, k+1 ) - refsum*t1
748 z( j, k+2 ) = z( j, k+2 ) - refsum*t2
749 z( j, k+3 ) = z( j, k+3 ) - refsum*t3
750 130 CONTINUE
751 140 CONTINUE
752 END IF
753*
754* ==== End of near-the-diagonal bulge chase. ====
755*
756 145 CONTINUE
757*
758* ==== Use U (if accumulated) to update far-from-diagonal
759* . entries in H. If required, use U to update Z as
760* . well. ====
761*
762 IF( accum ) THEN
763 IF( wantt ) THEN
764 jtop = 1
765 jbot = n
766 ELSE
767 jtop = ktop
768 jbot = kbot
769 END IF
770 k1 = max( 1, ktop-incol )
771 nu = ( kdu-max( 0, ndcol-kbot ) ) - k1 + 1
772*
773* ==== Horizontal Multiply ====
774*
775 DO 150 jcol = min( ndcol, kbot ) + 1, jbot, nh
776 jlen = min( nh, jbot-jcol+1 )
777 CALL zgemm( 'C', 'N', nu, jlen, nu, one, u( k1, k1 ),
778 $ ldu, h( incol+k1, jcol ), ldh, zero, wh,
779 $ ldwh )
780 CALL zlacpy( 'ALL', nu, jlen, wh, ldwh,
781 $ h( incol+k1, jcol ), ldh )
782 150 CONTINUE
783*
784* ==== Vertical multiply ====
785*
786 DO 160 jrow = jtop, max( ktop, incol ) - 1, nv
787 jlen = min( nv, max( ktop, incol )-jrow )
788 CALL zgemm( 'N', 'N', jlen, nu, nu, one,
789 $ h( jrow, incol+k1 ), ldh, u( k1, k1 ),
790 $ ldu, zero, wv, ldwv )
791 CALL zlacpy( 'ALL', jlen, nu, wv, ldwv,
792 $ h( jrow, incol+k1 ), ldh )
793 160 CONTINUE
794*
795* ==== Z multiply (also vertical) ====
796*
797 IF( wantz ) THEN
798 DO 170 jrow = iloz, ihiz, nv
799 jlen = min( nv, ihiz-jrow+1 )
800 CALL zgemm( 'N', 'N', jlen, nu, nu, one,
801 $ z( jrow, incol+k1 ), ldz, u( k1, k1 ),
802 $ ldu, zero, wv, ldwv )
803 CALL zlacpy( 'ALL', jlen, nu, wv, ldwv,
804 $ z( jrow, incol+k1 ), ldz )
805 170 CONTINUE
806 END IF
807 END IF
808 180 CONTINUE
809*
810* ==== End of ZLAQR5 ====
811*
812 END
subroutine dlabad(SMALL, LARGE)
DLABAD
Definition: dlabad.f:74
subroutine zgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
ZGEMM
Definition: zgemm.f:187
subroutine ztrmm(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB)
ZTRMM
Definition: ztrmm.f:177
subroutine zlaqr5(WANTT, WANTZ, KACC22, N, KTOP, KBOT, NSHFTS, S, H, LDH, ILOZ, IHIZ, Z, LDZ, V, LDV, U, LDU, NV, WV, LDWV, NH, WH, LDWH)
ZLAQR5 performs a single small-bulge multi-shift QR sweep.
Definition: zlaqr5.f:257
subroutine zlacpy(UPLO, M, N, A, LDA, B, LDB)
ZLACPY copies all or part of one two-dimensional array to another.
Definition: zlacpy.f:103
subroutine zlaqr1(N, H, LDH, S1, S2, V)
ZLAQR1 sets a scalar multiple of the first column of the product of 2-by-2 or 3-by-3 matrix H and spe...
Definition: zlaqr1.f:107
subroutine zlaset(UPLO, M, N, ALPHA, BETA, A, LDA)
ZLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition: zlaset.f:106
subroutine zlarfg(N, ALPHA, X, INCX, TAU)
ZLARFG generates an elementary reflector (Householder matrix).
Definition: zlarfg.f:106