```      SUBROUTINE ZGERQ2( M, N, A, LDA, TAU, WORK, INFO )
*
*  -- LAPACK routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
INTEGER            INFO, LDA, M, N
*     ..
*     .. Array Arguments ..
COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  ZGERQ2 computes an RQ factorization of a complex m by n matrix A:
*  A = R * Q.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  N >= 0.
*
*  A       (input/output) COMPLEX*16 array, dimension (LDA,N)
*          On entry, the m by n matrix A.
*          On exit, if m <= n, the upper triangle of the subarray
*          A(1:m,n-m+1:n) contains the m by m upper triangular matrix R;
*          if m >= n, the elements on and above the (m-n)-th subdiagonal
*          contain the m by n upper trapezoidal matrix R; the remaining
*          elements, with the array TAU, represent the unitary matrix
*          Q as a product of elementary reflectors (see Further
*          Details).
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,M).
*
*  TAU     (output) COMPLEX*16 array, dimension (min(M,N))
*          The scalar factors of the elementary reflectors (see Further
*          Details).
*
*  WORK    (workspace) COMPLEX*16 array, dimension (M)
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -i, the i-th argument had an illegal value
*
*  Further Details
*  ===============
*
*  The matrix Q is represented as a product of elementary reflectors
*
*     Q = H(1)' H(2)' . . . H(k)', where k = min(m,n).
*
*  Each H(i) has the form
*
*     H(i) = I - tau * v * v'
*
*  where tau is a complex scalar, and v is a complex vector with
*  v(n-k+i+1:n) = 0 and v(n-k+i) = 1; conjg(v(1:n-k+i-1)) is stored on
*  exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i).
*
*  =====================================================================
*
*     .. Parameters ..
COMPLEX*16         ONE
PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
INTEGER            I, K
COMPLEX*16         ALPHA
*     ..
*     .. External Subroutines ..
EXTERNAL           XERBLA, ZLACGV, ZLARF, ZLARFG
*     ..
*     .. Intrinsic Functions ..
INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
INFO = 0
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -4
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZGERQ2', -INFO )
RETURN
END IF
*
K = MIN( M, N )
*
DO 10 I = K, 1, -1
*
*        Generate elementary reflector H(i) to annihilate
*        A(m-k+i,1:n-k+i-1)
*
CALL ZLACGV( N-K+I, A( M-K+I, 1 ), LDA )
ALPHA = A( M-K+I, N-K+I )
CALL ZLARFG( N-K+I, ALPHA, A( M-K+I, 1 ), LDA, TAU( I ) )
*
*        Apply H(i) to A(1:m-k+i-1,1:n-k+i) from the right
*
A( M-K+I, N-K+I ) = ONE
CALL ZLARF( 'Right', M-K+I-1, N-K+I, A( M-K+I, 1 ), LDA,
\$               TAU( I ), A, LDA, WORK )
A( M-K+I, N-K+I ) = ALPHA
CALL ZLACGV( N-K+I-1, A( M-K+I, 1 ), LDA )
10 CONTINUE
RETURN
*
*     End of ZGERQ2
*
END

```