next up previous contents index
Next: 12.3.1 Compressible Flow Algorithm Up: Irregular Loosely Synchronous Previous: 12.2.4 Summary

12.3 Transonic Flow


Unstructured meshes have been widely used for calculations with conventional sequential machines. Jameson [Jameson:86a;86b] uses explicit finite-element-based  schemes on fully unstructured tetrahedral meshes to solve for the flow around a complete aircraft, and other workers [Dannenhoffer:89a], [Holmes:86a], [Lohner:84a;85a;86a] have used unstructured triangular meshes. Jameson and others [Jameson:87a;87b], [Mavriplis:88a], [Perez:86a], [Usab:83a] have used multigrid methods  to accelerate convergence . For this work [Williams:89b], we have used the two-dimensional explicit algorithm of Jameson and Mavriplis [Mavriplis:88a].

An explicit update procedure is local, and hence well matched to a massively parallel distributed machine, whereas an implicit algorithm is more difficult to parallelize. The implicit step consists of solving a sparse set of linear equations, where matrix elements are nonzero only for mesh-connected nodes. Matrix multiplication is easy to parallelize since it is also a local operation, and the solve may thus be accomplished by an iterative technique such as conjugate gradient, which consists of repeated matrix multiplications. If, however, the same solve is to be done repeatedly for the same mesh, the most efficient (sequential) method is first decomposing the matrix in some way, resulting in fill-in. In terms of the mesh, this fill-in represents nonlocal connection between nodes:indeed, if the matrix were completely filled, the communication time would be proportional to for N nodes.

Guy Robinson
Wed Mar 1 10:19:35 EST 1995