next up previous contents index
Next: 3.5 Spatial Properties of Up: 3 A Methodology for Previous: Examples of Complex

3.4 The Temporal Properties of ComplexSystems


As shown in Equation 3.1, we will use complex systems to unify a variety of different concepts including nature and an underlying theory such as Quantum Chromodynamics;  the numerical formulation of the theory; the result of expressing this with various software paradigms and the final computer used in its simulation. Different disciplines have correctly been built up around these different complex systems. Correspondingly different terminology is often used to describe related issues. This is certainly reasonable for both historical and technical reasons. However, we argue that understanding the process of computation and answering questions such as, ``Which parallel computers are good for which problems?''; ``What problems parallelize?''; and ``What are productive parallel software paradigms?'' is helped by a terminology which bridges the different complex systems. We can illustrate this with an anecdote. In a recent paper, an illustration of particles in the universe was augmented with a hierarchical set of clusters produced with the algorithm of Section 12.4. These clusters are designed to accurately represent the different length scales and physical clustering of the clouds of particles. This picture was labelled ``data structure'' but one computer science referee noted that this was not appropriate. Indeed, the referee was in one sense correct-we had not displayed a computer science data structure such as a Fortran array or C structure defining the linked list  of particles. However, taking the point of view of the physicist, this picture was precisely showing the structure of the data and so, the caption was in one discipline (physics) correct and in another (computer science) false!

We will now define and discuss some general properties and parameters of complex systems which span the various disciplines involved.

We will first discuss possible temporal structures for a complex system. Here, we draw on a computer science classification of computer architecture. In this context, aspects such as internode topology refer to the spatial structure of the computer viewed as a complex system. The control structure of the computer refers to the temporal behavior of its complex system. In our review of parallel computer hardware, we have already introduced the concepts of SIMD and MIMD, two important temporal classes which carry over to general complex systems. Returning to Figures 3.7(a) and 3.7(b), we see complex systems which are MIMD  (or asynchronous as defined below) in Figure 3.7(b) and either SIMD or a restricted form of MIMD in Figure 3.7(a) (synchronous or loosely synchronous in language below). In fact, when we consider the temporal structure of problems ( in Equation 3.1), software (), and hardware ( in Equation 3.1), we will need to further extend this classification. Here we will briefly define concepts and give the section number where we discuss and illustrate it more fully.

When we consider computer hardware and software systems, we will need to consider other temporal classes which can be thought of as further subdivisions of the asynchronous class.

In Figure 3.8, we summarize these temporal classifications for complex systems, indicating a partial ordering with arrows pointing to more general architectures. This will become clearer in Section 3.5 when we discuss software and the relation between problem and computer. Note that although the language is drawn from the point of view of computer architecture, the classifications are important at the problem, software, and hardware level.

Figure 3.8: Partial Ordering of Temporal (Control) Architectures for a Complex System

The hardware (computer) architecture naturally divides into SIMD  (synchronous), MIMD (asynchronous), and von Neumann classes. The problem structures are synchronous, loosely synchronous, or asynchronous. One can argue that the shared-memory asynchronous architecture is naturally suggested by software () considerations and in particular by the goal of efficient parallel execution for sequential software models. For this reason it becomes an important computer architecture even though it is not a natural problem () architecture.

next up previous contents index
Next: 3.5 Spatial Properties of Up: 3 A Methodology for Previous: Examples of Complex

Guy Robinson
Wed Mar 1 10:19:35 EST 1995