SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
pzher_.c
Go to the documentation of this file.
1/* ---------------------------------------------------------------------
2*
3* -- PBLAS routine (version 2.0) --
4* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
5* and University of California, Berkeley.
6* April 1, 1998
7*
8* ---------------------------------------------------------------------
9*/
10/*
11* Include files
12*/
13#include "pblas.h"
14#include "PBpblas.h"
15#include "PBtools.h"
16#include "PBblacs.h"
17#include "PBblas.h"
18
19#ifdef __STDC__
20void pzher_( F_CHAR_T UPLO, Int * N, double * ALPHA,
21 double * X, Int * IX, Int * JX, Int * DESCX, Int * INCX,
22 double * A, Int * IA, Int * JA, Int * DESCA )
23#else
24void pzher_( UPLO, N, ALPHA, X, IX, JX, DESCX, INCX, A, IA, JA, DESCA )
25/*
26* .. Scalar Arguments ..
27*/
28 F_CHAR_T UPLO;
29 Int * IA, * INCX, * IX, * JA, * JX, * N;
30 double * ALPHA;
31/*
32* .. Array Arguments ..
33*/
34 Int * DESCA, * DESCX;
35 double * A, * X;
36#endif
37{
38/*
39* Purpose
40* =======
41*
42* PZHER performs the Hermitian rank 1 operation
43*
44* sub( A ) := alpha*sub( X )*conjg( sub( X )' ) + sub( A ),
45*
46* where
47*
48* sub( A ) denotes A(IA:IA+N-1,JA:JA+N-1), and,
49*
50* sub( X ) denotes X(IX,JX:JX+N-1) if INCX = M_X,
51* X(IX:IX+N-1,JX) if INCX = 1 and INCX <> M_X.
52*
53* Alpha is a real scalar, sub( X ) is an n element subvector and
54* sub( A ) is an n by n Hermitian submatrix.
55*
56* Notes
57* =====
58*
59* A description vector is associated with each 2D block-cyclicly dis-
60* tributed matrix. This vector stores the information required to
61* establish the mapping between a matrix entry and its corresponding
62* process and memory location.
63*
64* In the following comments, the character _ should be read as
65* "of the distributed matrix". Let A be a generic term for any 2D
66* block cyclicly distributed matrix. Its description vector is DESC_A:
67*
68* NOTATION STORED IN EXPLANATION
69* ---------------- --------------- ------------------------------------
70* DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type.
71* CTXT_A (global) DESCA[ CTXT_ ] The BLACS context handle, indicating
72* the NPROW x NPCOL BLACS process grid
73* A is distributed over. The context
74* itself is global, but the handle
75* (the integer value) may vary.
76* M_A (global) DESCA[ M_ ] The number of rows in the distribu-
77* ted matrix A, M_A >= 0.
78* N_A (global) DESCA[ N_ ] The number of columns in the distri-
79* buted matrix A, N_A >= 0.
80* IMB_A (global) DESCA[ IMB_ ] The number of rows of the upper left
81* block of the matrix A, IMB_A > 0.
82* INB_A (global) DESCA[ INB_ ] The number of columns of the upper
83* left block of the matrix A,
84* INB_A > 0.
85* MB_A (global) DESCA[ MB_ ] The blocking factor used to distri-
86* bute the last M_A-IMB_A rows of A,
87* MB_A > 0.
88* NB_A (global) DESCA[ NB_ ] The blocking factor used to distri-
89* bute the last N_A-INB_A columns of
90* A, NB_A > 0.
91* RSRC_A (global) DESCA[ RSRC_ ] The process row over which the first
92* row of the matrix A is distributed,
93* NPROW > RSRC_A >= 0.
94* CSRC_A (global) DESCA[ CSRC_ ] The process column over which the
95* first column of A is distributed.
96* NPCOL > CSRC_A >= 0.
97* LLD_A (local) DESCA[ LLD_ ] The leading dimension of the local
98* array storing the local blocks of
99* the distributed matrix A,
100* IF( Lc( 1, N_A ) > 0 )
101* LLD_A >= MAX( 1, Lr( 1, M_A ) )
102* ELSE
103* LLD_A >= 1.
104*
105* Let K be the number of rows of a matrix A starting at the global in-
106* dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows
107* that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would
108* receive if these K rows were distributed over NPROW processes. If K
109* is the number of columns of a matrix A starting at the global index
110* JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number of co-
111* lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would receive if
112* these K columns were distributed over NPCOL processes.
113*
114* The values of Lr() and Lc() may be determined via a call to the func-
115* tion PB_Cnumroc:
116* Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW )
117* Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL )
118*
119* Arguments
120* =========
121*
122* UPLO (global input) CHARACTER*1
123* On entry, UPLO specifies whether the local pieces of
124* the array A containing the upper or lower triangular part
125* of the Hermitian submatrix sub( A ) are to be referenced as
126* follows:
127*
128* UPLO = 'U' or 'u' Only the local pieces corresponding to
129* the upper triangular part of the
130* Hermitian submatrix sub( A ) are to be
131* referenced,
132*
133* UPLO = 'L' or 'l' Only the local pieces corresponding to
134* the lower triangular part of the
135* Hermitian submatrix sub( A ) are to be
136* referenced.
137*
138* N (global input) INTEGER
139* On entry, N specifies the order of the submatrix sub( A ).
140* N must be at least zero.
141*
142* ALPHA (global input) DOUBLE PRECISION
143* On entry, ALPHA specifies the scalar alpha. When ALPHA is
144* supplied as zero then the local entries of the array X
145* corresponding to the entries of the subvector sub( X ) need
146* not be set on input.
147*
148* X (local input) COMPLEX*16 array
149* On entry, X is an array of dimension (LLD_X, Kx), where LLD_X
150* is at least MAX( 1, Lr( 1, IX ) ) when INCX = M_X and
151* MAX( 1, Lr( 1, IX+N-1 ) ) otherwise, and, Kx is at least
152* Lc( 1, JX+N-1 ) when INCX = M_X and Lc( 1, JX ) otherwise.
153* Before entry, this array contains the local entries of the
154* matrix X.
155*
156* IX (global input) INTEGER
157* On entry, IX specifies X's global row index, which points to
158* the beginning of the submatrix sub( X ).
159*
160* JX (global input) INTEGER
161* On entry, JX specifies X's global column index, which points
162* to the beginning of the submatrix sub( X ).
163*
164* DESCX (global and local input) INTEGER array
165* On entry, DESCX is an integer array of dimension DLEN_. This
166* is the array descriptor for the matrix X.
167*
168* INCX (global input) INTEGER
169* On entry, INCX specifies the global increment for the
170* elements of X. Only two values of INCX are supported in
171* this version, namely 1 and M_X. INCX must not be zero.
172*
173* A (local input/local output) COMPLEX*16 array
174* On entry, A is an array of dimension (LLD_A, Ka), where Ka is
175* at least Lc( 1, JA+N-1 ). Before entry, this array contains
176* the local entries of the matrix A.
177* Before entry with UPLO = 'U' or 'u', this array contains
178* the local entries corresponding to the upper triangular part
179* of the Hermitian submatrix sub( A ), and the local entries
180* corresponding to the strictly lower triangular of sub( A )
181* are not referenced. On exit, the upper triangular part of
182* sub( A ) is overwritten by the upper triangular part of the
183* updated submatrix.
184* Before entry with UPLO = 'L' or 'l', this array contains
185* the local entries corresponding to the lower triangular part
186* of the Hermitian submatrix sub( A ), and the local entries
187* corresponding to the strictly upper triangular of sub( A )
188* are not referenced. On exit, the lower triangular part of
189* sub( A ) is overwritten by the lower triangular part of the
190* updated submatrix.
191* Note that the imaginary parts of the local entries corres-
192* ponding to the diagonal elements of sub( A ) need not be
193* set, they are assumed to be zero, and on exit they are set
194* to zero.
195*
196* IA (global input) INTEGER
197* On entry, IA specifies A's global row index, which points to
198* the beginning of the submatrix sub( A ).
199*
200* JA (global input) INTEGER
201* On entry, JA specifies A's global column index, which points
202* to the beginning of the submatrix sub( A ).
203*
204* DESCA (global and local input) INTEGER array
205* On entry, DESCA is an integer array of dimension DLEN_. This
206* is the array descriptor for the matrix A.
207*
208* -- Written on April 1, 1998 by
209* Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
210*
211* ---------------------------------------------------------------------
212*/
213/*
214* .. Local Scalars ..
215*/
216 char UploA;
217 Int Acol, Ai, Aii, Aimb1, Ainb1, Aj, Ajj, Akp, Akq, Ald, Amb,
218 Amp, Amp0, Anb, Anq, Anq0, Arow, XCfr, XCld, XRfr, XRld,
219 Xi, Xj, ctxt, info, ione=1, k, kb, ktmp, mycol, myrow, nb,
220 npcol, nprow, size, upper;
221 cmplx16 Calpha;
222 PBTYP_T * type;
223/*
224* .. Local Arrays ..
225*/
226 Int Ad[DLEN_], Ad0[DLEN_], XCd0[DLEN_], XRd0[DLEN_], Xd[DLEN_];
227 char * Aptr = NULL, * XC = NULL, * XR = NULL;
228/* ..
229* .. Executable Statements ..
230*
231*/
232 upper = ( ( UploA = Mupcase( F2C_CHAR( UPLO )[0] ) ) == CUPPER );
233 PB_CargFtoC( *IA, *JA, DESCA, &Ai, &Aj, Ad );
234 PB_CargFtoC( *IX, *JX, DESCX, &Xi, &Xj, Xd );
235#ifndef NO_ARGCHK
236/*
237* Test the input parameters
238*/
239 Cblacs_gridinfo( ( ctxt = Xd[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
240 if( !( info = ( ( nprow == -1 ) ? -( 701 + CTXT_ ) : 0 ) ) )
241 {
242 if( ( !upper ) && ( UploA != CLOWER ) )
243 {
244 PB_Cwarn( ctxt, __LINE__, "PZHER", "Illegal UPLO = %c\n", UploA );
245 info = -1;
246 }
247 PB_Cchkvec( ctxt, "PZHER", "X", *N, 2, Xi, Xj, Xd, *INCX, 7, &info );
248 PB_Cchkmat( ctxt, "PZHER", "A", *N, 2, *N, 2, Ai, Aj, Ad, 12, &info );
249 }
250 if( info ) { PB_Cabort( ctxt, "PZHER", info ); return; }
251#endif
252/*
253* Quick return if possible
254*/
255 if( ( *N == 0 ) || ( ALPHA[REAL_PART] == ZERO ) )
256 return;
257/*
258* Retrieve process grid information
259*/
260#ifdef NO_ARGCHK
261 Cblacs_gridinfo( ( ctxt = Ad[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
262#endif
263/*
264* Get type structure
265*/
266 type = PB_Cztypeset();
267/*
268* Compute descriptor Ad0 for sub( A )
269*/
270 PB_Cdescribe( *N, *N, Ai, Aj, Ad, nprow, npcol, myrow, mycol, &Aii, &Ajj,
271 &Ald, &Aimb1, &Ainb1, &Amb, &Anb, &Arow, &Acol, Ad0 );
272/*
273* Replicate sub( X ) in process rows (XR) and process columns (XC) spanned by
274* sub( A )
275*/
276 if( *INCX == Xd[M_] )
277 {
278 PB_CInV( type, NOCONJG, ROW, *N, *N, Ad0, 1, ((char *) X), Xi, Xj,
279 Xd, ROW, &XR, XRd0, &XRfr );
280 PB_CInV( type, NOCONJG, COLUMN, *N, *N, Ad0, 1, XR, 0, 0,
281 XRd0, ROW, &XC, XCd0, &XCfr );
282 }
283 else
284 {
285 PB_CInV( type, NOCONJG, COLUMN, *N, *N, Ad0, 1, ((char *) X), Xi, Xj,
286 Xd, COLUMN, &XC, XCd0, &XCfr );
287 PB_CInV( type, NOCONJG, ROW, *N, *N, Ad0, 1, XC, 0, 0,
288 XCd0, COLUMN, &XR, XRd0, &XRfr );
289 }
290/*
291* Local rank-1 update if I own some data
292*/
293 Amp = PB_Cnumroc( *N, 0, Aimb1, Amb, myrow, Arow, nprow );
294 Anq = PB_Cnumroc( *N, 0, Ainb1, Anb, mycol, Acol, npcol );
295
296 if( ( Amp > 0 ) && ( Anq > 0 ) )
297 {
298 size = type->size;
299 Aptr = Mptr( ((char *) A), Aii, Ajj, Ald, size );
300/*
301* Computational partitioning size is computed as the product of the logical
302* value returned by pilaenv_ and 2 * lcm( nprow, npcol ).
303*/
304 nb = 2 * pilaenv_( &ctxt, C2F_CHAR( &type->type ) ) *
305 PB_Clcm( ( Arow >= 0 ? nprow : 1 ), ( Acol >= 0 ? npcol : 1 ) );
306
307 XCld = XCd0[LLD_]; XRld = XRd0[LLD_];
308 Calpha[REAL_PART] = ALPHA[REAL_PART];
309 Calpha[IMAG_PART] = ZERO;
310
311 if( upper )
312 {
313 for( k = 0; k < *N; k += nb )
314 {
315 kb = *N - k; kb = MIN( kb, nb );
316 Akp = PB_Cnumroc( k, 0, Aimb1, Amb, myrow, Arow, nprow );
317 Akq = PB_Cnumroc( k, 0, Ainb1, Anb, mycol, Acol, npcol );
318 Anq0 = PB_Cnumroc( kb, k, Ainb1, Anb, mycol, Acol, npcol );
319 if( Akp > 0 && Anq0 > 0 )
320 zgerc_( &Akp, &Anq0, ((char *) Calpha), XC, &ione,
321 Mptr( XR, 0, Akq, XRld, size ), &XRld, Mptr( Aptr, 0,
322 Akq, Ald, size ), &Ald );
323 PB_Cpsyr( type, UPPER, kb, 1, ((char *) Calpha), Mptr( XC, Akp, 0,
324 XCld, size ), XCld, Mptr( XR, 0, Akq, XRld, size ), XRld,
325 Aptr, k, k, Ad0, PB_Ctzher );
326 }
327 }
328 else
329 {
330 for( k = 0; k < *N; k += nb )
331 {
332 kb = *N - k; ktmp = k + ( kb = MIN( kb, nb ) );
333 Akp = PB_Cnumroc( k, 0, Aimb1, Amb, myrow, Arow, nprow );
334 Akq = PB_Cnumroc( k, 0, Ainb1, Anb, mycol, Acol, npcol );
335 PB_Cpsyr( type, LOWER, kb, 1, ((char *) Calpha), Mptr( XC, Akp, 0,
336 XCld, size ), XCld, Mptr( XR, 0, Akq, XRld, size ), XRld,
337 Aptr, k, k, Ad0, PB_Ctzher );
338 Akp = PB_Cnumroc( ktmp, 0, Aimb1, Amb, myrow, Arow, nprow );
339 Amp0 = Amp - Akp;
340 Anq0 = PB_Cnumroc( kb, k, Ainb1, Anb, mycol, Acol, npcol );
341 if( Amp0 > 0 && Anq0 > 0 )
342 zgerc_( &Amp0, &Anq0, ((char *) Calpha), Mptr( XC, Akp,
343 0, XCld, size ), &ione, Mptr( XR, 0, Akq, XRld, size ),
344 &XRld, Mptr( Aptr, Akp, Akq, Ald, size ), &Ald );
345 }
346 }
347 }
348 if( XRfr ) free( XR );
349 if( XCfr ) free( XC );
350/*
351* End of PZHER
352*/
353}
#define Int
Definition Bconfig.h:22
#define REAL_PART
Definition pblas.h:139
double cmplx16[2]
Definition pblas.h:137
#define F2C_CHAR(a)
Definition pblas.h:124
#define C2F_CHAR(a)
Definition pblas.h:125
#define IMAG_PART
Definition pblas.h:140
char * F_CHAR_T
Definition pblas.h:122
#define COLUMN
Definition PBblacs.h:45
#define ROW
Definition PBblacs.h:46
void Cblacs_gridinfo()
#define NOCONJG
Definition PBblas.h:45
#define CUPPER
Definition PBblas.h:26
#define zgerc_
Definition PBblas.h:164
#define LOWER
Definition PBblas.h:51
#define UPPER
Definition PBblas.h:52
#define CLOWER
Definition PBblas.h:25
#define pzher_
Definition PBpblas.h:139
#define pilaenv_
Definition PBpblas.h:44
#define CTXT_
Definition PBtools.h:38
void PB_Cabort()
void PB_Cpsyr()
void PB_Cchkvec()
void PB_Cchkmat()
#define MIN(a_, b_)
Definition PBtools.h:76
#define Mptr(a_, i_, j_, lda_, siz_)
Definition PBtools.h:132
void PB_Cwarn()
#define LLD_
Definition PBtools.h:47
Int PB_Cnumroc()
void PB_CInV()
PBTYP_T * PB_Cztypeset()
#define M_
Definition PBtools.h:39
void PB_Ctzher()
void PB_CargFtoC()
Int PB_Clcm()
#define ZERO
Definition PBtools.h:66
#define Mupcase(C)
Definition PBtools.h:83
#define DLEN_
Definition PBtools.h:48
void PB_Cdescribe()
char type
Definition pblas.h:331
Int size
Definition pblas.h:333