SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
pdormr3.f
Go to the documentation of this file.
1 SUBROUTINE pdormr3( SIDE, TRANS, M, N, K, L, A, IA, JA, DESCA,
2 $ TAU, C, IC, JC, DESCC, WORK, LWORK, INFO )
3*
4* -- ScaLAPACK routine (version 1.7) --
5* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
6* and University of California, Berkeley.
7* May 25, 2001
8*
9* .. Scalar Arguments ..
10 CHARACTER SIDE, TRANS
11 INTEGER IA, IC, INFO, JA, JC, K, L, LWORK, M, N
12* ..
13* .. Array Arguments ..
14 INTEGER DESCA( * ), DESCC( * )
15 DOUBLE PRECISION A( * ), C( * ), TAU( * ), WORK( * )
16* ..
17*
18* Purpose
19* =======
20*
21* PDORMR3 overwrites the general real M-by-N distributed matrix
22* sub( C ) = C(IC:IC+M-1,JC:JC+N-1) with
23*
24* SIDE = 'L' SIDE = 'R'
25* TRANS = 'N': Q * sub( C ) sub( C ) * Q
26* TRANS = 'T': Q**T * sub( C ) sub( C ) * Q**T
27*
28* where Q is a real orthogonal distributed matrix defined as the
29* product of K elementary reflectors
30*
31* Q = H(1) H(2) . . . H(k)
32*
33* as returned by PDTZRZF. Q is of order M if SIDE = 'L' and of order N
34* if SIDE = 'R'.
35*
36* Notes
37* =====
38*
39* Each global data object is described by an associated description
40* vector. This vector stores the information required to establish
41* the mapping between an object element and its corresponding process
42* and memory location.
43*
44* Let A be a generic term for any 2D block cyclicly distributed array.
45* Such a global array has an associated description vector DESCA.
46* In the following comments, the character _ should be read as
47* "of the global array".
48*
49* NOTATION STORED IN EXPLANATION
50* --------------- -------------- --------------------------------------
51* DTYPE_A(global) DESCA( DTYPE_ )The descriptor type. In this case,
52* DTYPE_A = 1.
53* CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
54* the BLACS process grid A is distribu-
55* ted over. The context itself is glo-
56* bal, but the handle (the integer
57* value) may vary.
58* M_A (global) DESCA( M_ ) The number of rows in the global
59* array A.
60* N_A (global) DESCA( N_ ) The number of columns in the global
61* array A.
62* MB_A (global) DESCA( MB_ ) The blocking factor used to distribute
63* the rows of the array.
64* NB_A (global) DESCA( NB_ ) The blocking factor used to distribute
65* the columns of the array.
66* RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
67* row of the array A is distributed.
68* CSRC_A (global) DESCA( CSRC_ ) The process column over which the
69* first column of the array A is
70* distributed.
71* LLD_A (local) DESCA( LLD_ ) The leading dimension of the local
72* array. LLD_A >= MAX(1,LOCr(M_A)).
73*
74* Let K be the number of rows or columns of a distributed matrix,
75* and assume that its process grid has dimension p x q.
76* LOCr( K ) denotes the number of elements of K that a process
77* would receive if K were distributed over the p processes of its
78* process column.
79* Similarly, LOCc( K ) denotes the number of elements of K that a
80* process would receive if K were distributed over the q processes of
81* its process row.
82* The values of LOCr() and LOCc() may be determined via a call to the
83* ScaLAPACK tool function, NUMROC:
84* LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
85* LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).
86* An upper bound for these quantities may be computed by:
87* LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
88* LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A
89*
90* Arguments
91* =========
92*
93* SIDE (global input) CHARACTER
94* = 'L': apply Q or Q**T from the Left;
95* = 'R': apply Q or Q**T from the Right.
96*
97* TRANS (global input) CHARACTER
98* = 'N': No transpose, apply Q;
99* = 'T': Transpose, apply Q**T.
100*
101* M (global input) INTEGER
102* The number of rows to be operated on i.e the number of rows
103* of the distributed submatrix sub( C ). M >= 0.
104*
105* N (global input) INTEGER
106* The number of columns to be operated on i.e the number of
107* columns of the distributed submatrix sub( C ). N >= 0.
108*
109* K (global input) INTEGER
110* The number of elementary reflectors whose product defines the
111* matrix Q. If SIDE = 'L', M >= K >= 0, if SIDE = 'R',
112* N >= K >= 0.
113*
114* L (global input) INTEGER
115* The columns of the distributed submatrix sub( A ) containing
116* the meaningful part of the Householder reflectors.
117* If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
118*
119* A (local input) DOUBLE PRECISION pointer into the local memory
120* to an array of dimension (LLD_A,LOCc(JA+M-1)) if SIDE='L',
121* and (LLD_A,LOCc(JA+N-1)) if SIDE='R', where
122* LLD_A >= MAX(1,LOCr(IA+K-1)); On entry, the i-th row must
123* contain the vector which defines the elementary reflector
124* H(i), IA <= i <= IA+K-1, as returned by PDTZRZF in the
125* K rows of its distributed matrix argument A(IA:IA+K-1,JA:*).
126* A(IA:IA+K-1,JA:*) is modified by the routine but restored on
127* exit.
128*
129* IA (global input) INTEGER
130* The row index in the global array A indicating the first
131* row of sub( A ).
132*
133* JA (global input) INTEGER
134* The column index in the global array A indicating the
135* first column of sub( A ).
136*
137* DESCA (global and local input) INTEGER array of dimension DLEN_.
138* The array descriptor for the distributed matrix A.
139*
140* TAU (local input) DOUBLE PRECISION array, dimension LOCc(IA+K-1).
141* This array contains the scalar factors TAU(i) of the
142* elementary reflectors H(i) as returned by PDTZRZF.
143* TAU is tied to the distributed matrix A.
144*
145* C (local input/local output) DOUBLE PRECISION pointer into the
146* local memory to an array of dimension (LLD_C,LOCc(JC+N-1)).
147* On entry, the local pieces of the distributed matrix sub(C).
148* On exit, sub( C ) is overwritten by Q*sub( C ) or Q'*sub( C )
149* or sub( C )*Q' or sub( C )*Q.
150*
151* IC (global input) INTEGER
152* The row index in the global array C indicating the first
153* row of sub( C ).
154*
155* JC (global input) INTEGER
156* The column index in the global array C indicating the
157* first column of sub( C ).
158*
159* DESCC (global and local input) INTEGER array of dimension DLEN_.
160* The array descriptor for the distributed matrix C.
161*
162* WORK (local workspace/local output) DOUBLE PRECISION array,
163* dimension (LWORK)
164* On exit, WORK(1) returns the minimal and optimal LWORK.
165*
166* LWORK (local or global input) INTEGER
167* The dimension of the array WORK.
168* LWORK is local input and must be at least
169* If SIDE = 'L', LWORK >= MpC0 + MAX( MAX( 1, NqC0 ), NUMROC(
170* NUMROC( M+IROFFC,MB_A,0,0,NPROW ),MB_A,0,0,LCMP ) );
171* if SIDE = 'R', LWORK >= NqC0 + MAX( 1, MpC0 );
172*
173* where LCMP = LCM / NPROW with LCM = ICLM( NPROW, NPCOL ),
174*
175* IROFFC = MOD( IC-1, MB_C ), ICOFFC = MOD( JC-1, NB_C ),
176* ICROW = INDXG2P( IC, MB_C, MYROW, RSRC_C, NPROW ),
177* ICCOL = INDXG2P( JC, NB_C, MYCOL, CSRC_C, NPCOL ),
178* MpC0 = NUMROC( M+IROFFC, MB_C, MYROW, ICROW, NPROW ),
179* NqC0 = NUMROC( N+ICOFFC, NB_C, MYCOL, ICCOL, NPCOL ),
180*
181* ILCM, INDXG2P and NUMROC are ScaLAPACK tool functions;
182* MYROW, MYCOL, NPROW and NPCOL can be determined by calling
183* the subroutine BLACS_GRIDINFO.
184*
185* If LWORK = -1, then LWORK is global input and a workspace
186* query is assumed; the routine only calculates the minimum
187* and optimal size for all work arrays. Each of these
188* values is returned in the first entry of the corresponding
189* work array, and no error message is issued by PXERBLA.
190*
191*
192* INFO (local output) INTEGER
193* = 0: successful exit
194* < 0: If the i-th argument is an array and the j-entry had
195* an illegal value, then INFO = -(i*100+j), if the i-th
196* argument is a scalar and had an illegal value, then
197* INFO = -i.
198*
199* Alignment requirements
200* ======================
201*
202* The distributed submatrices A(IA:*, JA:*) and C(IC:IC+M-1,JC:JC+N-1)
203* must verify some alignment properties, namely the following
204* expressions should be true:
205*
206* If SIDE = 'L',
207* ( NB_A.EQ.MB_C .AND. ICOFFA.EQ.IROFFC )
208* If SIDE = 'R',
209* ( NB_A.EQ.NB_C .AND. ICOFFA.EQ.ICOFFC .AND. IACOL.EQ.ICCOL )
210*
211* =====================================================================
212*
213* .. Parameters ..
214 INTEGER BLOCK_CYCLIC_2D, CSRC_, CTXT_, DLEN_, DTYPE_,
215 $ lld_, mb_, m_, nb_, n_, rsrc_
216 parameter( block_cyclic_2d = 1, dlen_ = 9, dtype_ = 1,
217 $ ctxt_ = 2, m_ = 3, n_ = 4, mb_ = 5, nb_ = 6,
218 $ rsrc_ = 7, csrc_ = 8, lld_ = 9 )
219* ..
220* .. Local Scalars ..
221 LOGICAL LEFT, LQUERY, NOTRAN
222 CHARACTER COLBTOP, ROWBTOP
223 INTEGER I, I1, I2, I3, IACOL, ICC, ICCOL, ICOFFA,
224 $ icoffc, icrow, ictxt, iroffc, jaa, jcc, lcm,
225 $ lcmp, lwmin, mi, mpc0, mycol, myrow, ni, npcol,
226 $ nprow, nq, nqc0
227* ..
228* .. External Subroutines ..
229 EXTERNAL blacs_abort, blacs_gridinfo, chk1mat, pdlarz,
230 $ pb_topget, pb_topset, pxerbla
231* ..
232* .. External Functions ..
233 LOGICAL LSAME
234 INTEGER ILCM, INDXG2P, NUMROC
235 EXTERNAL ilcm, indxg2p, lsame, numroc
236* ..
237* .. Intrinsic Functions ..
238 INTRINSIC dble, max, mod
239* ..
240* .. Executable Statements ..
241*
242* Get grid parameters
243*
244 ictxt = desca( ctxt_ )
245 CALL blacs_gridinfo( ictxt, nprow, npcol, myrow, mycol )
246*
247* Test the input parameters
248*
249 info = 0
250 IF( nprow.EQ.-1 ) THEN
251 info = -(900+ctxt_)
252 ELSE
253 left = lsame( side, 'L' )
254 notran = lsame( trans, 'N' )
255*
256* NQ is the order of Q
257*
258 IF( left ) THEN
259 nq = m
260 CALL chk1mat( k, 5, m, 3, ia, ja, desca, 10, info )
261 ELSE
262 nq = n
263 CALL chk1mat( k, 5, n, 4, ia, ja, desca, 10, info )
264 END IF
265 CALL chk1mat( m, 3, n, 4, ic, jc, descc, 15, info )
266 IF( info.EQ.0 ) THEN
267 icoffa = mod( ja-1, desca( nb_ ) )
268 iroffc = mod( ic-1, descc( mb_ ) )
269 icoffc = mod( jc-1, descc( nb_ ) )
270 iacol = indxg2p( ja, desca( nb_ ), mycol, desca( csrc_ ),
271 $ npcol )
272 icrow = indxg2p( ic, descc( mb_ ), myrow, descc( rsrc_ ),
273 $ nprow )
274 iccol = indxg2p( jc, descc( nb_ ), mycol, descc( csrc_ ),
275 $ npcol )
276 mpc0 = numroc( m+iroffc, descc( mb_ ), myrow, icrow, nprow )
277 nqc0 = numroc( n+icoffc, descc( nb_ ), mycol, iccol, npcol )
278*
279 IF( left ) THEN
280 lcm = ilcm( nprow, npcol )
281 lcmp = lcm / nprow
282 lwmin = mpc0 + max( max( 1, nqc0 ), numroc( numroc(
283 $ m+iroffc, desca( mb_ ), 0, 0, nprow ),
284 $ desca( mb_ ), 0, 0, lcmp ) )
285 ELSE
286 lwmin = nqc0 + max( 1, mpc0 )
287 END IF
288*
289 work( 1 ) = dble( lwmin )
290 lquery = ( lwork.EQ.-1 )
291 IF( .NOT.left .AND. .NOT.lsame( side, 'R' ) ) THEN
292 info = -1
293 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'T' ) ) THEN
294 info = -2
295 ELSE IF( k.LT.0 .OR. k.GT.nq ) THEN
296 info = -5
297 ELSE IF( l.LT.0 .OR. l.GT.nq ) THEN
298 info = -6
299 ELSE IF( left .AND. desca( nb_ ).NE.descc( mb_ ) ) THEN
300 info = -(1000+nb_)
301 ELSE IF( left .AND. icoffa.NE.iroffc ) THEN
302 info = -13
303 ELSE IF( .NOT.left .AND. icoffa.NE.icoffc ) THEN
304 info = -14
305 ELSE IF( .NOT.left .AND. iacol.NE.iccol ) THEN
306 info = -14
307 ELSE IF( .NOT.left .AND. desca( nb_ ).NE.descc( nb_ ) ) THEN
308 info = -(1500+nb_)
309 ELSE IF( ictxt.NE.descc( ctxt_ ) ) THEN
310 info = -(1500+ctxt_)
311 ELSE IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
312 info = -17
313 END IF
314 END IF
315 END IF
316*
317 IF( info.NE.0 ) THEN
318 CALL pxerbla( ictxt, 'PDORMR3', -info )
319 CALL blacs_abort( ictxt, 1 )
320 RETURN
321 ELSE IF( lquery ) THEN
322 RETURN
323 END IF
324*
325* Quick return if possible
326*
327 IF( m.EQ.0 .OR. n.EQ.0 .OR. k.EQ.0 )
328 $ RETURN
329*
330 CALL pb_topget( ictxt, 'Broadcast', 'Rowwise', rowbtop )
331 CALL pb_topget( ictxt, 'Broadcast', 'Columnwise', colbtop )
332*
333 IF( ( left .AND. .NOT.notran .OR. .NOT.left .AND. notran ) ) THEN
334 i1 = ia
335 i2 = ia + k - 1
336 i3 = 1
337 ELSE
338 i1 = ia + k - 1
339 i2 = ia
340 i3 = -1
341 END IF
342*
343 IF( left ) THEN
344 ni = n
345 jcc = jc
346 jaa = ja + m - l
347 ELSE
348 mi = m
349 icc = ic
350 jaa = ja + n - l
351 CALL pb_topset( ictxt, 'Broadcast', 'Rowwise', ' ' )
352 IF( notran ) THEN
353 CALL pb_topset( ictxt, 'Broadcast', 'Columnwise', 'I-ring' )
354 ELSE
355 CALL pb_topset( ictxt, 'Broadcast', 'Columnwise', 'D-ring' )
356 END IF
357 END IF
358*
359 DO 10 i = i1, i2, i3
360 IF( left ) THEN
361*
362* H(i) or H(i)' is applied to C(ic+i-ia:icc+m-1,jc:jc+n-1)
363*
364 mi = m - i + ia
365 icc = ic + i - ia
366 ELSE
367*
368* H(i) or H(i)' is applied to C(ic:ic+m-1,jc+i-ia:jc+n-1)
369*
370 ni = n - i + ia
371 jcc = jc + i - ia
372 END IF
373*
374* Apply H(i) or H(i)'
375*
376 CALL pdlarz( side, mi, ni, l, a, i, jaa, desca, desca( m_ ),
377 $ tau, c, icc, jcc, descc, work )
378*
379 10 CONTINUE
380*
381 CALL pb_topset( ictxt, 'Broadcast', 'Rowwise', rowbtop )
382 CALL pb_topset( ictxt, 'Broadcast', 'Columnwise', colbtop )
383*
384 work( 1 ) = dble( lwmin )
385*
386 RETURN
387*
388* End of PDORMR3
389*
390 END
subroutine chk1mat(ma, mapos0, na, napos0, ia, ja, desca, descapos0, info)
Definition chk1mat.f:3
#define max(A, B)
Definition pcgemr.c:180
subroutine pdlarz(side, m, n, l, v, iv, jv, descv, incv, tau, c, ic, jc, descc, work)
Definition pdlarz.f:3
subroutine pdormr3(side, trans, m, n, k, l, a, ia, ja, desca, tau, c, ic, jc, descc, work, lwork, info)
Definition pdormr3.f:3
subroutine pxerbla(ictxt, srname, info)
Definition pxerbla.f:2