SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zmmddact.f
Go to the documentation of this file.
1 SUBROUTINE zmmddact( M, N, ALPHA, A, LDA, BETA, B, LDB )
2*
3* -- PBLAS auxiliary routine (version 2.0) --
4* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
5* and University of California, Berkeley.
6* April 1, 1998
7*
8* .. Scalar Arguments ..
9 INTEGER LDA, LDB, M, N
10 COMPLEX*16 ALPHA, BETA
11* ..
12* .. Array Arguments ..
13 COMPLEX*16 A( LDA, * ), B( LDB, * )
14* ..
15*
16* Purpose
17* =======
18*
19* ZMMDDACT performs the following operation:
20*
21* A := alpha * A + beta * conjg( B' ),
22*
23* where alpha, beta are scalars; A is an m by n matrix and B is an n by
24* m matrix.
25*
26* Arguments
27* =========
28*
29* M (local input) INTEGER
30* On entry, M specifies the number of rows of A and the number
31* of columns of B. M must be at least zero.
32*
33* N (local input) INTEGER
34* On entry, N specifies the number of rows of B and the number
35* of columns of A. N must be at least zero.
36*
37* ALPHA (local input) COMPLEX*16
38* On entry, ALPHA specifies the scalar alpha. When ALPHA is
39* supplied as zero then the local entries of the array A need
40* not be set on input.
41*
42* A (local input/local output) COMPLEX*16 array
43* On entry, A is an array of dimension ( LDA, N ). On exit, the
44* leading n by m part of B has been conjugated and added to the
45* leading m by n part of A.
46*
47* LDA (local input) INTEGER
48* On entry, LDA specifies the leading dimension of the array A.
49* LDA must be at least max( 1, M ).
50*
51* BETA (local input) COMPLEX*16
52* On entry, BETA specifies the scalar beta. When BETA is sup-
53* plied as zero then the local entries of the array B need not
54* be set on input.
55*
56* B (local input) COMPLEX*16 array
57* On entry, B is an array of dimension ( LDB, M ).
58*
59* LDB (local input) INTEGER
60* On entry, LDB specifies the leading dimension of the array B.
61* LDB must be at least max( 1, N ).
62*
63* -- Written on April 1, 1998 by
64* Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
65*
66* =====================================================================
67*
68* .. Parameters ..
69 COMPLEX*16 ONE, ZERO
70 parameter( one = ( 1.0d+0, 0.0d+0 ),
71 $ zero = ( 0.0d+0, 0.0d+0 ) )
72* ..
73* .. Local Scalars ..
74 INTEGER I, J
75* ..
76* .. External Subroutines ..
77 EXTERNAL zscal
78* ..
79* .. Intrinsic Functions ..
80 INTRINSIC dconjg
81* ..
82* .. Executable Statements ..
83*
84 IF( m.GE.n ) THEN
85 IF( beta.EQ.one ) THEN
86 IF( alpha.EQ.zero ) THEN
87 DO 20 j = 1, n
88 DO 10 i = 1, m
89 a( i, j ) = dconjg( b( j, i ) )
90 10 CONTINUE
91 20 CONTINUE
92 ELSE IF( alpha.NE.one ) THEN
93 DO 40 j = 1, n
94 DO 30 i = 1, m
95 a( i, j ) = dconjg( b( j, i ) ) + alpha * a( i, j )
96 30 CONTINUE
97 40 CONTINUE
98 ELSE
99 DO 60 j = 1, n
100 DO 50 i = 1, m
101 a( i, j ) = dconjg( b( j, i ) ) + a( i, j )
102 50 CONTINUE
103 60 CONTINUE
104 END IF
105 ELSE IF( beta.NE.zero ) THEN
106 IF( alpha.EQ.zero ) THEN
107 DO 80 j = 1, n
108 DO 70 i = 1, m
109 a( i, j ) = beta * dconjg( b( j, i ) )
110 70 CONTINUE
111 80 CONTINUE
112 ELSE IF( alpha.NE.one ) THEN
113 DO 100 j = 1, n
114 DO 90 i = 1, m
115 a( i, j ) = beta * dconjg( b( j, i ) ) +
116 $ alpha * a( i, j )
117 90 CONTINUE
118 100 CONTINUE
119 ELSE
120 DO 120 j = 1, n
121 DO 110 i = 1, m
122 a( i, j ) = beta * dconjg( b( j, i ) ) + a( i, j )
123 110 CONTINUE
124 120 CONTINUE
125 END IF
126 ELSE
127 IF( alpha.EQ.zero ) THEN
128 DO 140 j = 1, n
129 DO 130 i = 1, m
130 a( i, j ) = zero
131 130 CONTINUE
132 140 CONTINUE
133 ELSE IF( alpha.NE.one ) THEN
134 DO 160 j = 1, n
135 CALL zscal( m, alpha, a( 1, j ), 1 )
136* DO 150 I = 1, M
137* A( I, J ) = ALPHA * A( I, J )
138* 150 CONTINUE
139 160 CONTINUE
140 END IF
141 END IF
142 ELSE
143 IF( beta.EQ.one ) THEN
144 IF( alpha.EQ.zero ) THEN
145 DO 180 j = 1, m
146 DO 170 i = 1, n
147 a( j, i ) = dconjg( b( i, j ) )
148 170 CONTINUE
149 180 CONTINUE
150 ELSE IF( alpha.NE.one ) THEN
151 DO 200 j = 1, m
152 DO 190 i = 1, n
153 a( j, i ) = dconjg( b( i, j ) ) + alpha * a( j, i )
154 190 CONTINUE
155 200 CONTINUE
156 ELSE
157 DO 220 j = 1, m
158 DO 210 i = 1, n
159 a( j, i ) = dconjg( b( i, j ) ) + a( j, i )
160 210 CONTINUE
161 220 CONTINUE
162 END IF
163 ELSE IF( beta.NE.zero ) THEN
164 IF( alpha.EQ.zero ) THEN
165 DO 240 j = 1, m
166 DO 230 i = 1, n
167 a( j, i ) = beta * dconjg( b( i, j ) )
168 230 CONTINUE
169 240 CONTINUE
170 ELSE IF( alpha.NE.one ) THEN
171 DO 260 j = 1, m
172 DO 250 i = 1, n
173 a( j, i ) = beta * dconjg( b( i, j ) ) +
174 $ alpha * a( j, i )
175 250 CONTINUE
176 260 CONTINUE
177 ELSE
178 DO 280 j = 1, m
179 DO 270 i = 1, n
180 a( j, i ) = beta * dconjg( b( i, j ) ) + a( j, i )
181 270 CONTINUE
182 280 CONTINUE
183 END IF
184 ELSE
185 IF( alpha.EQ.zero ) THEN
186 DO 300 j = 1, n
187 DO 290 i = 1, m
188 a( i, j ) = zero
189 290 CONTINUE
190 300 CONTINUE
191 ELSE IF( alpha.NE.one ) THEN
192 DO 320 j = 1, n
193 CALL zscal( m, alpha, a( 1, j ), 1 )
194* DO 310 I = 1, M
195* A( I, J ) = ALPHA * A( I, J )
196* 310 CONTINUE
197 320 CONTINUE
198 END IF
199 END IF
200 END IF
201*
202 RETURN
203*
204* End of ZMMDDACT
205*
206 END
subroutine zmmddact(m, n, alpha, a, lda, beta, b, ldb)
Definition zmmddact.f:2