SCALAPACK 2.2.2
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
pscnrm2_.c
Go to the documentation of this file.
1/* ---------------------------------------------------------------------
2*
3* -- PBLAS routine (version 2.0) --
4* University of Tennessee, Knoxville, Oak Ridge National Laboratory,
5* and University of California, Berkeley.
6* April 1, 1998
7*
8* ---------------------------------------------------------------------
9*/
10/*
11* Include files
12*/
13#include "pblas.h"
14#include "PBpblas.h"
15#include "PBtools.h"
16#include "PBblacs.h"
17#include "PBblas.h"
18
19#ifdef __STDC__
20void pscnrm2_( Int * N, float * NORM2,
21 float * X, Int * IX, Int * JX, Int * DESCX, Int * INCX )
22#else
23void pscnrm2_( N, NORM2, X, IX, JX, DESCX, INCX )
24/*
25* .. Scalar Arguments ..
26*/
27 Int * INCX, * IX, * JX, * N;
28 float * NORM2;
29/*
30* .. Array Arguments ..
31*/
32 Int * DESCX;
33 float * X;
34#endif
35{
36/*
37* Purpose
38* =======
39*
40* PSCNRM2 computes the 2-norm of a subvector sub( X ),
41*
42* where
43*
44* sub( X ) denotes X(IX,JX:JX+N-1) if INCX = M_X,
45* X(IX:IX+N-1,JX) if INCX = 1 and INCX <> M_X.
46*
47* Notes
48* =====
49*
50* A description vector is associated with each 2D block-cyclicly dis-
51* tributed matrix. This vector stores the information required to
52* establish the mapping between a matrix entry and its corresponding
53* process and memory location.
54*
55* In the following comments, the character _ should be read as
56* "of the distributed matrix". Let A be a generic term for any 2D
57* block cyclicly distributed matrix. Its description vector is DESC_A:
58*
59* NOTATION STORED IN EXPLANATION
60* ---------------- --------------- ------------------------------------
61* DTYPE_A (global) DESCA[ DTYPE_ ] The descriptor type.
62* CTXT_A (global) DESCA[ CTXT_ ] The BLACS context handle, indicating
63* the NPROW x NPCOL BLACS process grid
64* A is distributed over. The context
65* itself is global, but the handle
66* (the integer value) may vary.
67* M_A (global) DESCA[ M_ ] The number of rows in the distribu-
68* ted matrix A, M_A >= 0.
69* N_A (global) DESCA[ N_ ] The number of columns in the distri-
70* buted matrix A, N_A >= 0.
71* IMB_A (global) DESCA[ IMB_ ] The number of rows of the upper left
72* block of the matrix A, IMB_A > 0.
73* INB_A (global) DESCA[ INB_ ] The number of columns of the upper
74* left block of the matrix A,
75* INB_A > 0.
76* MB_A (global) DESCA[ MB_ ] The blocking factor used to distri-
77* bute the last M_A-IMB_A rows of A,
78* MB_A > 0.
79* NB_A (global) DESCA[ NB_ ] The blocking factor used to distri-
80* bute the last N_A-INB_A columns of
81* A, NB_A > 0.
82* RSRC_A (global) DESCA[ RSRC_ ] The process row over which the first
83* row of the matrix A is distributed,
84* NPROW > RSRC_A >= 0.
85* CSRC_A (global) DESCA[ CSRC_ ] The process column over which the
86* first column of A is distributed.
87* NPCOL > CSRC_A >= 0.
88* LLD_A (local) DESCA[ LLD_ ] The leading dimension of the local
89* array storing the local blocks of
90* the distributed matrix A,
91* IF( Lc( 1, N_A ) > 0 )
92* LLD_A >= MAX( 1, Lr( 1, M_A ) )
93* ELSE
94* LLD_A >= 1.
95*
96* Let K be the number of rows of a matrix A starting at the global in-
97* dex IA,i.e, A( IA:IA+K-1, : ). Lr( IA, K ) denotes the number of rows
98* that the process of row coordinate MYROW ( 0 <= MYROW < NPROW ) would
99* receive if these K rows were distributed over NPROW processes. If K
100* is the number of columns of a matrix A starting at the global index
101* JA, i.e, A( :, JA:JA+K-1, : ), Lc( JA, K ) denotes the number of co-
102* lumns that the process MYCOL ( 0 <= MYCOL < NPCOL ) would receive if
103* these K columns were distributed over NPCOL processes.
104*
105* The values of Lr() and Lc() may be determined via a call to the func-
106* tion PB_Cnumroc:
107* Lr( IA, K ) = PB_Cnumroc( K, IA, IMB_A, MB_A, MYROW, RSRC_A, NPROW )
108* Lc( JA, K ) = PB_Cnumroc( K, JA, INB_A, NB_A, MYCOL, CSRC_A, NPCOL )
109*
110* Arguments
111* =========
112*
113* N (global input) INTEGER
114* On entry, N specifies the length of the subvector sub( X ).
115* N must be at least zero.
116*
117* NORM2 (local output) REAL
118* On exit, NORM2 specifies the 2-norm of the subvector sub( X )
119* only in its scope (See below for further details).
120*
121* X (local input) COMPLEX array
122* On entry, X is an array of dimension (LLD_X, Kx), where LLD_X
123* is at least MAX( 1, Lr( 1, IX ) ) when INCX = M_X and
124* MAX( 1, Lr( 1, IX+N-1 ) ) otherwise, and, Kx is at least
125* Lc( 1, JX+N-1 ) when INCX = M_X and Lc( 1, JX ) otherwise.
126* Before entry, this array contains the local entries of the
127* matrix X.
128*
129* IX (global input) INTEGER
130* On entry, IX specifies X's global row index, which points to
131* the beginning of the submatrix sub( X ).
132*
133* JX (global input) INTEGER
134* On entry, JX specifies X's global column index, which points
135* to the beginning of the submatrix sub( X ).
136*
137* DESCX (global and local input) INTEGER array
138* On entry, DESCX is an integer array of dimension DLEN_. This
139* is the array descriptor for the matrix X.
140*
141* INCX (global input) INTEGER
142* On entry, INCX specifies the global increment for the
143* elements of X. Only two values of INCX are supported in
144* this version, namely 1 and M_X. INCX must not be zero.
145*
146* Further Details
147* ===============
148*
149* When the result of a vector-oriented PBLAS call is a scalar, this
150* scalar is set only within the process scope which owns the vector(s)
151* being operated on. Let sub( X ) be a generic term for the input vec-
152* tor(s). Then, the processes owning the correct the answer is determi-
153* ned as follows: if an operation involves more than one vector, the
154* processes receiving the result will be the union of the following set
155* of processes for each vector:
156*
157* If N = 1, M_X = 1 and INCX = 1, then one cannot determine if a pro-
158* cess row or process column owns the vector operand, therefore only
159* the process owning sub( X ) receives the correct result;
160*
161* If INCX = M_X, then sub( X ) is a vector distributed over a process
162* row. Each process in this row receives the result;
163*
164* If INCX = 1, then sub( X ) is a vector distributed over a process
165* column. Each process in this column receives the result;
166*
167* -- Written on April 1, 1998 by
168* Antoine Petitet, University of Tennessee, Knoxville 37996, USA.
169*
170* ---------------------------------------------------------------------
171*/
172/*
173* .. Local Scalars ..
174*/
175 char * Xptr = NULL, top;
176 Int Xcol, Xi, Xii, Xj, Xjj, Xld, Xnp, Xnq, Xrow, ctxt, dst, dist,
177 info, k, mycol, mydist, myrow, npcol, nprow, src, size;
178 float Xtmp, scale, ssq, temp1, temp2;
179 PBTYP_T * type;
180/*
181* .. Local Arrays ..
182*/
183 Int Xd[DLEN_];
184 float work[4];
185/* ..
186* .. Executable Statements ..
187*
188*/
189 PB_CargFtoC( *IX, *JX, DESCX, &Xi, &Xj, Xd );
190#ifndef NO_ARGCHK
191/*
192* Test the input parameters
193*/
194 Cblacs_gridinfo( ( ctxt = Xd[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
195 if( !( info = ( ( nprow == -1 ) ? -( 601 + CTXT_ ) : 0 ) ) )
196 PB_Cchkvec( ctxt, "PSCNRM2", "X", *N, 1, Xi, Xj, Xd, *INCX, 6, &info );
197 if( info ) { PB_Cabort( ctxt, "PSCNRM2", info ); return; }
198#endif
199/*
200* Initialize NORM2
201*/
202 *NORM2 = ZERO;
203/*
204* Quick return if possible
205*/
206 if( *N == 0 ) return;
207/*
208* Retrieve process grid information
209*/
210#ifdef NO_ARGCHK
211 Cblacs_gridinfo( ( ctxt = Xd[CTXT_] ), &nprow, &npcol, &myrow, &mycol );
212#endif
213/*
214* Retrieve sub( X )'s local information: Xii, Xjj, Xrow, Xcol
215*/
216 PB_Cinfog2l( Xi, Xj, Xd, nprow, npcol, myrow, mycol, &Xii, &Xjj,
217 &Xrow, &Xcol );
218/*
219* Handle degenerate case separately, sub( X )'s scope is just one process
220*/
221 if( ( *N == 1 ) && ( *INCX == 1 ) && ( Xd[M_] == 1 ) )
222 {
223/*
224* Make sure I own some data and compute NORM2
225*/
226 if( ( ( myrow == Xrow ) || ( Xrow < 0 ) ) &&
227 ( ( mycol == Xcol ) || ( Xcol < 0 ) ) )
228 {
229 scale = ZERO;
230 ssq = ONE;
231 type = PB_Cctypeset();
232 Xptr = Mptr( ((char *) X), Xii, Xjj, Xd[LLD_], type->size );
233 Xtmp = ((float *) Xptr)[REAL_PART];
234 if( Xtmp != ZERO )
235 {
236 temp1 = ABS( Xtmp );
237 if( scale < temp1 )
238 {
239 temp2 = scale / temp1;
240 ssq = ONE + ssq * ( temp2 * temp2 );
241 scale = temp1;
242 }
243 else
244 {
245 temp2 = temp1 / scale;
246 ssq = ssq + ( temp2 * temp2 );
247 }
248 }
249 Xtmp = ((float *) Xptr)[IMAG_PART];
250 if( Xtmp != ZERO )
251 {
252 temp1 = ABS( Xtmp );
253 if( scale < temp1 )
254 {
255 temp2 = scale / temp1;
256 ssq = ONE + ssq * ( temp2 * temp2 );
257 scale = temp1;
258 }
259 else
260 {
261 temp2 = temp1 / scale;
262 ssq = ssq + ( temp2 * temp2 );
263 }
264 }
265/*
266* Compute NORM2 = SCALE * SQRT( SSQ )
267*/
268 sasqrtb_( &scale, &ssq, NORM2 );
269 }
270 return;
271 }
272 else if( *INCX == Xd[M_] )
273 {
274/*
275* sub( X ) resides in (a) process row(s)
276*/
277 if( ( myrow == Xrow ) || ( Xrow < 0 ) )
278 {
279/*
280* Initialize SCALE and SSQ
281*/
282 scale = ZERO;
283 ssq = ONE;
284/*
285* Make sure I own some data and compute local sum of squares
286*/
287 Xnq = PB_Cnumroc( *N, Xj, Xd[INB_], Xd[NB_], mycol, Xd[CSRC_], npcol );
288 if( Xnq > 0 )
289 {
290 Xld = Xd[LLD_];
291 type = PB_Cctypeset(); size = type->size;
292 Xptr = Mptr( ((char *) X), Xii, Xjj, Xld, size );
293
294 for( k = 0; k < Xnq; k++ )
295 {
296 Xtmp = ((float *) Xptr)[REAL_PART];
297 if( Xtmp != ZERO )
298 {
299 temp1 = ABS( Xtmp );
300 if( scale < temp1 )
301 {
302 temp2 = scale / temp1;
303 ssq = ONE + ssq * ( temp2 * temp2 );
304 scale = temp1;
305 }
306 else
307 {
308 temp2 = temp1 / scale;
309 ssq = ssq + ( temp2 * temp2 );
310 }
311 }
312 Xtmp = ((float *) Xptr)[IMAG_PART];
313 if( Xtmp != ZERO )
314 {
315 temp1 = ABS( Xtmp );
316 if( scale < temp1 )
317 {
318 temp2 = scale / temp1;
319 ssq = ONE + ssq * ( temp2 * temp2 );
320 scale = temp1;
321 }
322 else
323 {
324 temp2 = temp1 / scale;
325 ssq = ssq + ( temp2 * temp2 );
326 }
327 }
328 Xptr += Xld * size;
329 }
330 }
331/*
332* If Xnq <= 0, SCALE is zero and SSQ is one (see initialization above)
333*/
334 if( ( npcol >= 2 ) && ( Xcol >= 0 ) )
335 {
336/*
337* Combine the local sum of squares using a 1-tree topology within process row
338* 0 if npcol > 1 and Xcol >= 0, i.e sub( X ) is distributed.
339*/
340 work[0] = scale;
341 work[1] = ssq;
342
343 mydist = mycol;
344 k = 1;
345l_10:
346 if( mydist & 1 )
347 {
348 dist = k * ( mydist - 1 );
349 dst = MPosMod( dist, npcol );
350 Csgesd2d( ctxt, 2, 1, ((char*) work), 2, myrow, dst );
351 goto l_20;
352 }
353 else
354 {
355 dist = mycol + k;
356 src = MPosMod( dist, npcol );
357
358 if( mycol < src )
359 {
360 Csgerv2d( ctxt, 2, 1, ((char*)&work[2]), 2, myrow, src );
361 if( work[0] >= work[2] )
362 {
363 if( work[0] != ZERO )
364 {
365 temp1 = work[2] / work[0];
366 work[1] = work[1] + ( temp1 * temp1 ) * work[3];
367 }
368 }
369 else
370 {
371 temp1 = work[0] / work[2];
372 work[1] = work[3] + ( temp1 * temp1 ) * work[1];
373 work[0] = work[2];
374 }
375 }
376 mydist >>= 1;
377 }
378 k <<= 1;
379
380 if( k < npcol ) goto l_10;
381l_20:
382/*
383* Process column 0 broadcasts the combined values of SCALE and SSQ within their
384* process row.
385*/
386 top = *PB_Ctop( &ctxt, BCAST, ROW, TOP_GET );
387 if( mycol == 0 )
388 {
389 Csgebs2d( ctxt, ROW, &top, 2, 1, ((char*)work), 2 );
390 }
391 else
392 {
393 Csgebr2d( ctxt, ROW, &top, 2, 1, ((char*)work), 2,
394 myrow, 0 );
395 }
396/*
397* Compute NORM2 redundantly NORM2 = WORK( 1 ) * SQRT( WORK( 2 ) )
398*/
399 sasqrtb_( &work[0], &work[1], NORM2 );
400 }
401 else
402 {
403/*
404* Compute NORM2 redundantly ( sub( X ) is not distributed )
405*/
406 sasqrtb_( &scale, &ssq, NORM2 );
407 }
408 }
409 return;
410 }
411 else
412 {
413/*
414* sub( X ) resides in (a) process column(s)
415*/
416 if( ( mycol == Xcol ) || ( Xcol < 0 ) )
417 {
418/*
419* Initialize SCALE and SSQ
420*/
421 scale = ZERO;
422 ssq = ONE;
423/*
424* Make sure I own some data and compute local sum of squares
425*/
426 Xnp = PB_Cnumroc( *N, Xi, Xd[IMB_], Xd[MB_], myrow, Xd[RSRC_], nprow );
427 if( Xnp > 0 )
428 {
429 type = PB_Cctypeset(); size = type->size;
430 Xptr = Mptr( ((char *) X), Xii, Xjj, Xd[LLD_], size );
431
432 for( k = 0; k < Xnp; k++ )
433 {
434 Xtmp = ((float *) Xptr)[REAL_PART];
435 if( Xtmp != ZERO )
436 {
437 temp1 = ABS( Xtmp );
438 if( scale < temp1 )
439 {
440 temp2 = scale / temp1;
441 ssq = ONE + ssq * ( temp2 * temp2 );
442 scale = temp1;
443 }
444 else
445 {
446 temp2 = temp1 / scale;
447 ssq = ssq + ( temp2 * temp2 );
448 }
449 }
450 Xtmp = ((float *) Xptr)[IMAG_PART];
451 if( Xtmp != ZERO )
452 {
453 temp1 = ABS( Xtmp );
454 if( scale < temp1 )
455 {
456 temp2 = scale / temp1;
457 ssq = ONE + ssq * ( temp2 * temp2 );
458 scale = temp1;
459 }
460 else
461 {
462 temp2 = temp1 / scale;
463 ssq = ssq + ( temp2 * temp2 );
464 }
465 }
466 Xptr += size;
467 }
468 }
469/*
470* If Xnp <= 0, SCALE is zero and SSQ is one (see initialization above)
471*/
472 if( ( nprow >= 2 ) && ( Xrow >= 0 ) )
473 {
474/*
475* Combine the local sum of squares using a 1-tree topology within process
476* column 0 if nprow > 1 and Xrow >= 0, i.e sub( X ) is distributed.
477*/
478 work[0] = scale;
479 work[1] = ssq;
480
481 mydist = myrow;
482 k = 1;
483l_30:
484 if( mydist & 1 )
485 {
486 dist = k * ( mydist - 1 );
487 dst = MPosMod( dist, nprow );
488 Csgesd2d( ctxt, 2, 1, ((char*)work), 2, dst, mycol );
489 goto l_40;
490 }
491 else
492 {
493 dist = myrow + k;
494 src = MPosMod( dist, nprow );
495
496 if( myrow < src )
497 {
498 Csgerv2d( ctxt, 2, 1, ((char*)&work[2]), 2, src, mycol );
499 if( work[0] >= work[2] )
500 {
501 if( work[0] != ZERO )
502 {
503 temp1 = work[2] / work[0];
504 work[1] = work[1] + ( temp1 * temp1 ) * work[3];
505 }
506 }
507 else
508 {
509 temp1 = work[0] / work[2];
510 work[1] = work[3] + ( temp1 * temp1 ) * work[1];
511 work[0] = work[2];
512 }
513 }
514 mydist >>= 1;
515 }
516 k <<= 1;
517
518 if( k < nprow ) goto l_30;
519l_40:
520/*
521* Process column 0 broadcasts the combined values of SCALE and SSQ within their
522* process column
523*/
524 top = *PB_Ctop( &ctxt, BCAST, COLUMN, TOP_GET );
525 if( myrow == 0 )
526 {
527 Csgebs2d( ctxt, COLUMN, &top, 2, 1, ((char*)work), 2 );
528 }
529 else
530 {
531 Csgebr2d( ctxt, COLUMN, &top, 2, 1, ((char*)work), 2,
532 0, mycol );
533 }
534/*
535* Compute NORM2 redundantly NORM2 = WORK[0] * SQRT( WORK[1] )
536*/
537 sasqrtb_( &work[0], &work[1], NORM2 );
538 }
539 else
540 {
541/*
542* Compute NORM2 redundantly ( sub( X ) is not distributed )
543*/
544 sasqrtb_( &scale, &ssq, NORM2 );
545 }
546 }
547 return;
548 }
549/*
550* End of PSCNRM2
551*/
552}
#define Int
Definition Bconfig.h:22
#define REAL_PART
Definition pblas.h:139
#define IMAG_PART
Definition pblas.h:140
#define TOP_GET
Definition PBblacs.h:50
void Csgerv2d()
void Csgebr2d()
#define COLUMN
Definition PBblacs.h:45
void Csgebs2d()
#define ROW
Definition PBblacs.h:46
void Cblacs_gridinfo()
#define BCAST
Definition PBblacs.h:48
void Csgesd2d()
#define pscnrm2_
Definition PBpblas.h:79
#define CTXT_
Definition PBtools.h:38
#define MB_
Definition PBtools.h:43
void PB_Cabort()
#define ONE
Definition PBtools.h:64
void PB_Cchkvec()
void PB_Cinfog2l()
#define sasqrtb_
Definition PBtools.h:660
#define Mptr(a_, i_, j_, lda_, siz_)
Definition PBtools.h:132
#define LLD_
Definition PBtools.h:47
Int PB_Cnumroc()
char * PB_Ctop()
#define RSRC_
Definition PBtools.h:45
#define M_
Definition PBtools.h:39
#define INB_
Definition PBtools.h:42
#define MPosMod(I, d)
Definition PBtools.h:95
#define ABS(a_)
Definition PBtools.h:75
void PB_CargFtoC()
#define CSRC_
Definition PBtools.h:46
PBTYP_T * PB_Cctypeset()
#define IMB_
Definition PBtools.h:41
#define ZERO
Definition PBtools.h:66
#define DLEN_
Definition PBtools.h:48
#define NB_
Definition PBtools.h:44
Int size
Definition pblas.h:333