133 SUBROUTINE ssytrs_aa( UPLO, N, NRHS, A, LDA, IPIV, B, LDB,
134 $ WORK, LWORK, INFO )
144 INTEGER N, NRHS, LDA, LDB, LWORK, INFO
148 REAL A( LDA, * ), B( LDB, * ), WORK( * )
154 parameter( one = 1.0e+0 )
157 LOGICAL LQUERY, UPPER
158 INTEGER K, KP, LWKMIN
164 EXTERNAL sroundup_lwork
175 upper = lsame( uplo,
'U' )
176 lquery = ( lwork.EQ.-1 )
177 IF( min( n, nrhs ).EQ.0 )
THEN
183 IF( .NOT.upper .AND. .NOT.lsame( uplo,
'L' ) )
THEN
185 ELSE IF( n.LT.0 )
THEN
187 ELSE IF( nrhs.LT.0 )
THEN
189 ELSE IF( lda.LT.max( 1, n ) )
THEN
191 ELSE IF( ldb.LT.max( 1, n ) )
THEN
193 ELSE IF( lwork.LT.lwkmin .AND. .NOT.lquery )
THEN
197 CALL xerbla(
'SSYTRS_AA', -info )
199 ELSE IF( lquery )
THEN
200 work( 1 ) = sroundup_lwork( lwkmin )
206 IF( min( n, nrhs ).EQ.0 )
223 $
CALL sswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ),
230 CALL strsm(
'L',
'U',
'T',
'U', n-1, nrhs, one, a( 1,
232 $ lda, b( 2, 1 ), ldb)
239 CALL slacpy(
'F', 1, n, a(1, 1), lda+1, work(n), 1)
241 CALL slacpy(
'F', 1, n-1, a(1, 2), lda+1, work(1), 1)
242 CALL slacpy(
'F', 1, n-1, a(1, 2), lda+1, work(2*n), 1)
244 CALL sgtsv(n, nrhs, work(1), work(n), work(2*n), b, ldb,
254 CALL strsm(
'L',
'U',
'N',
'U', n-1, nrhs, one, a( 1,
264 $
CALL sswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
283 $
CALL sswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
289 CALL strsm(
'L',
'L',
'N',
'U', n-1, nrhs, one, a( 2, 1),
297 CALL slacpy(
'F', 1, n, a(1, 1), lda+1, work(n), 1)
299 CALL slacpy(
'F', 1, n-1, a(2, 1), lda+1, work(1), 1)
300 CALL slacpy(
'F', 1, n-1, a(2, 1), lda+1, work(2*n), 1)
302 CALL sgtsv(n, nrhs, work(1), work(n), work(2*n), b, ldb,
311 CALL strsm(
'L',
'L',
'T',
'U', n-1, nrhs, one, a( 2,
313 $ lda, b( 2, 1 ), ldb)
321 $
CALL sswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
subroutine sgtsv(n, nrhs, dl, d, du, b, ldb, info)
SGTSV computes the solution to system of linear equations A * X = B for GT matrices