Weslley S. Pereira, University of Colorado Denver, U.S. !>
!> Real values for test:
!> (1) x = 2**m, where m = MINEXPONENT-DIGITS, ..., MINEXPONENT-1.
!> Mind that not all platforms might implement subnormal numbers.
!> (2) x = 2**m, where m = MINEXPONENT, ..., 0.
!> (3) x = OV, where OV is the overflow threshold. OV^2 overflows but the norm is OV.
!> (4) x = 2**m, where m = MAXEXPONENT-1, ..., 1.
!>
!> Tests:
!> (a) y = x + 0 * I, y/y = 1
!> (b) y = 0 + x * I, y/y = 1
!> (c) y = x + x * I, y/y = 1
!> (d) y1 = 0 + x * I, y2 = x + 0 * I, y1/y2 = I
!> (e) y1 = 0 + x * I, y2 = x + 0 * I, y2/y1 = -I
!> (f) y = x + x * I, y/conj(y) = I
!>
!> Special cases:
!>
!> (i) Inf inputs:
!> (1) y = ( Inf + 0 * I)
!> (2) y = ( 0 + Inf * I)
!> (3) y = (-Inf + 0 * I)
!> (4) y = ( 0 - Inf * I)
!> (5) y = ( Inf + Inf * I)
!> Tests:
!> (a) 0 / y is either 0 or NaN.
!> (b) 1 / y is either 0 or NaN.
!> (c) y / y is NaN.
!>
!> (n) NaN inputs:
!> (1) y = (NaN + 0 * I)
!> (2) y = (0 + NaN * I)
!> (3) y = (NaN + NaN * I)
!> Tests:
!> (a) 0 / y is NaN.
!> (b) 1 / y is NaN.
!> (c) y / y is NaN.
!>
!>