LAPACK 3.11.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zgecon.f
Go to the documentation of this file.
1*> \brief \b ZGECON
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZGECON + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgecon.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgecon.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgecon.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE ZGECON( NORM, N, A, LDA, ANORM, RCOND, WORK, RWORK,
22* INFO )
23*
24* .. Scalar Arguments ..
25* CHARACTER NORM
26* INTEGER INFO, LDA, N
27* DOUBLE PRECISION ANORM, RCOND
28* ..
29* .. Array Arguments ..
30* DOUBLE PRECISION RWORK( * )
31* COMPLEX*16 A( LDA, * ), WORK( * )
32* ..
33*
34*
35*> \par Purpose:
36* =============
37*>
38*> \verbatim
39*>
40*> ZGECON estimates the reciprocal of the condition number of a general
41*> complex matrix A, in either the 1-norm or the infinity-norm, using
42*> the LU factorization computed by ZGETRF.
43*>
44*> An estimate is obtained for norm(inv(A)), and the reciprocal of the
45*> condition number is computed as
46*> RCOND = 1 / ( norm(A) * norm(inv(A)) ).
47*> \endverbatim
48*
49* Arguments:
50* ==========
51*
52*> \param[in] NORM
53*> \verbatim
54*> NORM is CHARACTER*1
55*> Specifies whether the 1-norm condition number or the
56*> infinity-norm condition number is required:
57*> = '1' or 'O': 1-norm;
58*> = 'I': Infinity-norm.
59*> \endverbatim
60*>
61*> \param[in] N
62*> \verbatim
63*> N is INTEGER
64*> The order of the matrix A. N >= 0.
65*> \endverbatim
66*>
67*> \param[in] A
68*> \verbatim
69*> A is COMPLEX*16 array, dimension (LDA,N)
70*> The factors L and U from the factorization A = P*L*U
71*> as computed by ZGETRF.
72*> \endverbatim
73*>
74*> \param[in] LDA
75*> \verbatim
76*> LDA is INTEGER
77*> The leading dimension of the array A. LDA >= max(1,N).
78*> \endverbatim
79*>
80*> \param[in] ANORM
81*> \verbatim
82*> ANORM is DOUBLE PRECISION
83*> If NORM = '1' or 'O', the 1-norm of the original matrix A.
84*> If NORM = 'I', the infinity-norm of the original matrix A.
85*> \endverbatim
86*>
87*> \param[out] RCOND
88*> \verbatim
89*> RCOND is DOUBLE PRECISION
90*> The reciprocal of the condition number of the matrix A,
91*> computed as RCOND = 1/(norm(A) * norm(inv(A))).
92*> \endverbatim
93*>
94*> \param[out] WORK
95*> \verbatim
96*> WORK is COMPLEX*16 array, dimension (2*N)
97*> \endverbatim
98*>
99*> \param[out] RWORK
100*> \verbatim
101*> RWORK is DOUBLE PRECISION array, dimension (2*N)
102*> \endverbatim
103*>
104*> \param[out] INFO
105*> \verbatim
106*> INFO is INTEGER
107*> = 0: successful exit
108*> < 0: if INFO = -i, the i-th argument had an illegal value
109*> \endverbatim
110*
111* Authors:
112* ========
113*
114*> \author Univ. of Tennessee
115*> \author Univ. of California Berkeley
116*> \author Univ. of Colorado Denver
117*> \author NAG Ltd.
118*
119*> \ingroup complex16GEcomputational
120*
121* =====================================================================
122 SUBROUTINE zgecon( NORM, N, A, LDA, ANORM, RCOND, WORK, RWORK,
123 $ INFO )
124*
125* -- LAPACK computational routine --
126* -- LAPACK is a software package provided by Univ. of Tennessee, --
127* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
128*
129* .. Scalar Arguments ..
130 CHARACTER NORM
131 INTEGER INFO, LDA, N
132 DOUBLE PRECISION ANORM, RCOND
133* ..
134* .. Array Arguments ..
135 DOUBLE PRECISION RWORK( * )
136 COMPLEX*16 A( LDA, * ), WORK( * )
137* ..
138*
139* =====================================================================
140*
141* .. Parameters ..
142 DOUBLE PRECISION ONE, ZERO
143 parameter( one = 1.0d+0, zero = 0.0d+0 )
144* ..
145* .. Local Scalars ..
146 LOGICAL ONENRM
147 CHARACTER NORMIN
148 INTEGER IX, KASE, KASE1
149 DOUBLE PRECISION AINVNM, SCALE, SL, SMLNUM, SU
150 COMPLEX*16 ZDUM
151* ..
152* .. Local Arrays ..
153 INTEGER ISAVE( 3 )
154* ..
155* .. External Functions ..
156 LOGICAL LSAME
157 INTEGER IZAMAX
158 DOUBLE PRECISION DLAMCH
159 EXTERNAL lsame, izamax, dlamch
160* ..
161* .. External Subroutines ..
162 EXTERNAL xerbla, zdrscl, zlacn2, zlatrs
163* ..
164* .. Intrinsic Functions ..
165 INTRINSIC abs, dble, dimag, max
166* ..
167* .. Statement Functions ..
168 DOUBLE PRECISION CABS1
169* ..
170* .. Statement Function definitions ..
171 cabs1( zdum ) = abs( dble( zdum ) ) + abs( dimag( zdum ) )
172* ..
173* .. Executable Statements ..
174*
175* Test the input parameters.
176*
177 info = 0
178 onenrm = norm.EQ.'1' .OR. lsame( norm, 'O' )
179 IF( .NOT.onenrm .AND. .NOT.lsame( norm, 'I' ) ) THEN
180 info = -1
181 ELSE IF( n.LT.0 ) THEN
182 info = -2
183 ELSE IF( lda.LT.max( 1, n ) ) THEN
184 info = -4
185 ELSE IF( anorm.LT.zero ) THEN
186 info = -5
187 END IF
188 IF( info.NE.0 ) THEN
189 CALL xerbla( 'ZGECON', -info )
190 RETURN
191 END IF
192*
193* Quick return if possible
194*
195 rcond = zero
196 IF( n.EQ.0 ) THEN
197 rcond = one
198 RETURN
199 ELSE IF( anorm.EQ.zero ) THEN
200 RETURN
201 END IF
202*
203 smlnum = dlamch( 'Safe minimum' )
204*
205* Estimate the norm of inv(A).
206*
207 ainvnm = zero
208 normin = 'N'
209 IF( onenrm ) THEN
210 kase1 = 1
211 ELSE
212 kase1 = 2
213 END IF
214 kase = 0
215 10 CONTINUE
216 CALL zlacn2( n, work( n+1 ), work, ainvnm, kase, isave )
217 IF( kase.NE.0 ) THEN
218 IF( kase.EQ.kase1 ) THEN
219*
220* Multiply by inv(L).
221*
222 CALL zlatrs( 'Lower', 'No transpose', 'Unit', normin, n, a,
223 $ lda, work, sl, rwork, info )
224*
225* Multiply by inv(U).
226*
227 CALL zlatrs( 'Upper', 'No transpose', 'Non-unit', normin, n,
228 $ a, lda, work, su, rwork( n+1 ), info )
229 ELSE
230*
231* Multiply by inv(U**H).
232*
233 CALL zlatrs( 'Upper', 'Conjugate transpose', 'Non-unit',
234 $ normin, n, a, lda, work, su, rwork( n+1 ),
235 $ info )
236*
237* Multiply by inv(L**H).
238*
239 CALL zlatrs( 'Lower', 'Conjugate transpose', 'Unit', normin,
240 $ n, a, lda, work, sl, rwork, info )
241 END IF
242*
243* Divide X by 1/(SL*SU) if doing so will not cause overflow.
244*
245 scale = sl*su
246 normin = 'Y'
247 IF( scale.NE.one ) THEN
248 ix = izamax( n, work, 1 )
249 IF( scale.LT.cabs1( work( ix ) )*smlnum .OR. scale.EQ.zero )
250 $ GO TO 20
251 CALL zdrscl( n, scale, work, 1 )
252 END IF
253 GO TO 10
254 END IF
255*
256* Compute the estimate of the reciprocal condition number.
257*
258 IF( ainvnm.NE.zero )
259 $ rcond = ( one / ainvnm ) / anorm
260*
261 20 CONTINUE
262 RETURN
263*
264* End of ZGECON
265*
266 END
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
subroutine zgecon(NORM, N, A, LDA, ANORM, RCOND, WORK, RWORK, INFO)
ZGECON
Definition: zgecon.f:124
subroutine zlacn2(N, V, X, EST, KASE, ISAVE)
ZLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
Definition: zlacn2.f:133
subroutine zlatrs(UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X, SCALE, CNORM, INFO)
ZLATRS solves a triangular system of equations with the scale factor set to prevent overflow.
Definition: zlatrs.f:239
subroutine zdrscl(N, SA, SX, INCX)
ZDRSCL multiplies a vector by the reciprocal of a real scalar.
Definition: zdrscl.f:84