LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ chegvx()

subroutine chegvx ( integer itype,
character jobz,
character range,
character uplo,
integer n,
complex, dimension( lda, * ) a,
integer lda,
complex, dimension( ldb, * ) b,
integer ldb,
real vl,
real vu,
integer il,
integer iu,
real abstol,
integer m,
real, dimension( * ) w,
complex, dimension( ldz, * ) z,
integer ldz,
complex, dimension( * ) work,
integer lwork,
real, dimension( * ) rwork,
integer, dimension( * ) iwork,
integer, dimension( * ) ifail,
integer info )

CHEGVX

Download CHEGVX + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> CHEGVX computes selected eigenvalues, and optionally, eigenvectors
!> of a complex generalized Hermitian-definite eigenproblem, of the form
!> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
!> B are assumed to be Hermitian and B is also positive definite.
!> Eigenvalues and eigenvectors can be selected by specifying either a
!> range of values or a range of indices for the desired eigenvalues.
!> 
Parameters
[in]ITYPE
!>          ITYPE is INTEGER
!>          Specifies the problem type to be solved:
!>          = 1:  A*x = (lambda)*B*x
!>          = 2:  A*B*x = (lambda)*x
!>          = 3:  B*A*x = (lambda)*x
!> 
[in]JOBZ
!>          JOBZ is CHARACTER*1
!>          = 'N':  Compute eigenvalues only;
!>          = 'V':  Compute eigenvalues and eigenvectors.
!> 
[in]RANGE
!>          RANGE is CHARACTER*1
!>          = 'A': all eigenvalues will be found.
!>          = 'V': all eigenvalues in the half-open interval (VL,VU]
!>                 will be found.
!>          = 'I': the IL-th through IU-th eigenvalues will be found.
!> 
[in]UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangles of A and B are stored;
!>          = 'L':  Lower triangles of A and B are stored.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrices A and B.  N >= 0.
!> 
[in,out]A
!>          A is COMPLEX array, dimension (LDA, N)
!>          On entry, the Hermitian matrix A.  If UPLO = 'U', the
!>          leading N-by-N upper triangular part of A contains the
!>          upper triangular part of the matrix A.  If UPLO = 'L',
!>          the leading N-by-N lower triangular part of A contains
!>          the lower triangular part of the matrix A.
!>
!>          On exit,  the lower triangle (if UPLO='L') or the upper
!>          triangle (if UPLO='U') of A, including the diagonal, is
!>          destroyed.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 
[in,out]B
!>          B is COMPLEX array, dimension (LDB, N)
!>          On entry, the Hermitian matrix B.  If UPLO = 'U', the
!>          leading N-by-N upper triangular part of B contains the
!>          upper triangular part of the matrix B.  If UPLO = 'L',
!>          the leading N-by-N lower triangular part of B contains
!>          the lower triangular part of the matrix B.
!>
!>          On exit, if INFO <= N, the part of B containing the matrix is
!>          overwritten by the triangular factor U or L from the Cholesky
!>          factorization B = U**H*U or B = L*L**H.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[in]VL
!>          VL is REAL
!>
!>          If RANGE='V', the lower bound of the interval to
!>          be searched for eigenvalues. VL < VU.
!>          Not referenced if RANGE = 'A' or 'I'.
!> 
[in]VU
!>          VU is REAL
!>
!>          If RANGE='V', the upper bound of the interval to
!>          be searched for eigenvalues. VL < VU.
!>          Not referenced if RANGE = 'A' or 'I'.
!> 
[in]IL
!>          IL is INTEGER
!>
!>          If RANGE='I', the index of the
!>          smallest eigenvalue to be returned.
!>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
!>          Not referenced if RANGE = 'A' or 'V'.
!> 
[in]IU
!>          IU is INTEGER
!>
!>          If RANGE='I', the index of the
!>          largest eigenvalue to be returned.
!>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
!>          Not referenced if RANGE = 'A' or 'V'.
!> 
[in]ABSTOL
!>          ABSTOL is REAL
!>          The absolute error tolerance for the eigenvalues.
!>          An approximate eigenvalue is accepted as converged
!>          when it is determined to lie in an interval [a,b]
!>          of width less than or equal to
!>
!>                  ABSTOL + EPS *   max( |a|,|b| ) ,
!>
!>          where EPS is the machine precision.  If ABSTOL is less than
!>          or equal to zero, then  EPS*|T|  will be used in its place,
!>          where |T| is the 1-norm of the tridiagonal matrix obtained
!>          by reducing C to tridiagonal form, where C is the symmetric
!>          matrix of the standard symmetric problem to which the
!>          generalized problem is transformed.
!>
!>          Eigenvalues will be computed most accurately when ABSTOL is
!>          set to twice the underflow threshold 2*SLAMCH('S'), not zero.
!>          If this routine returns with INFO>0, indicating that some
!>          eigenvectors did not converge, try setting ABSTOL to
!>          2*SLAMCH('S').
!> 
[out]M
!>          M is INTEGER
!>          The total number of eigenvalues found.  0 <= M <= N.
!>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
!> 
[out]W
!>          W is REAL array, dimension (N)
!>          The first M elements contain the selected
!>          eigenvalues in ascending order.
!> 
[out]Z
!>          Z is COMPLEX array, dimension (LDZ, max(1,M))
!>          If JOBZ = 'N', then Z is not referenced.
!>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
!>          contain the orthonormal eigenvectors of the matrix A
!>          corresponding to the selected eigenvalues, with the i-th
!>          column of Z holding the eigenvector associated with W(i).
!>          The eigenvectors are normalized as follows:
!>          if ITYPE = 1 or 2, Z**T*B*Z = I;
!>          if ITYPE = 3, Z**T*inv(B)*Z = I.
!>
!>          If an eigenvector fails to converge, then that column of Z
!>          contains the latest approximation to the eigenvector, and the
!>          index of the eigenvector is returned in IFAIL.
!>          Note: the user must ensure that at least max(1,M) columns are
!>          supplied in the array Z; if RANGE = 'V', the exact value of M
!>          is not known in advance and an upper bound must be used.
!> 
[in]LDZ
!>          LDZ is INTEGER
!>          The leading dimension of the array Z.  LDZ >= 1, and if
!>          JOBZ = 'V', LDZ >= max(1,N).
!> 
[out]WORK
!>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The length of the array WORK.  LWORK >= max(1,2*N).
!>          For optimal efficiency, LWORK >= (NB+1)*N,
!>          where NB is the blocksize for CHETRD returned by ILAENV.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 
[out]RWORK
!>          RWORK is REAL array, dimension (7*N)
!> 
[out]IWORK
!>          IWORK is INTEGER array, dimension (5*N)
!> 
[out]IFAIL
!>          IFAIL is INTEGER array, dimension (N)
!>          If JOBZ = 'V', then if INFO = 0, the first M elements of
!>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
!>          indices of the eigenvectors that failed to converge.
!>          If JOBZ = 'N', then IFAIL is not referenced.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  CPOTRF or CHEEVX returned an error code:
!>             <= N:  if INFO = i, CHEEVX failed to converge;
!>                    i eigenvectors failed to converge.  Their indices
!>                    are stored in array IFAIL.
!>             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
!>                    principal minor of order i of B is not positive.
!>                    The factorization of B could not be completed and
!>                    no eigenvalues or eigenvectors were computed.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA

Definition at line 302 of file chegvx.f.

305*
306* -- LAPACK driver routine --
307* -- LAPACK is a software package provided by Univ. of Tennessee, --
308* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
309*
310* .. Scalar Arguments ..
311 CHARACTER JOBZ, RANGE, UPLO
312 INTEGER IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
313 REAL ABSTOL, VL, VU
314* ..
315* .. Array Arguments ..
316 INTEGER IFAIL( * ), IWORK( * )
317 REAL RWORK( * ), W( * )
318 COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ),
319 $ Z( LDZ, * )
320* ..
321*
322* =====================================================================
323*
324* .. Parameters ..
325 COMPLEX CONE
326 parameter( cone = ( 1.0e+0, 0.0e+0 ) )
327* ..
328* .. Local Scalars ..
329 LOGICAL ALLEIG, INDEIG, LQUERY, UPPER, VALEIG, WANTZ
330 CHARACTER TRANS
331 INTEGER LWKOPT, NB
332* ..
333* .. External Functions ..
334 LOGICAL LSAME
335 INTEGER ILAENV
336 REAL SROUNDUP_LWORK
337 EXTERNAL ilaenv, lsame, sroundup_lwork
338* ..
339* .. External Subroutines ..
340 EXTERNAL cheevx, chegst, cpotrf, ctrmm, ctrsm,
341 $ xerbla
342* ..
343* .. Intrinsic Functions ..
344 INTRINSIC max, min
345* ..
346* .. Executable Statements ..
347*
348* Test the input parameters.
349*
350 wantz = lsame( jobz, 'V' )
351 upper = lsame( uplo, 'U' )
352 alleig = lsame( range, 'A' )
353 valeig = lsame( range, 'V' )
354 indeig = lsame( range, 'I' )
355 lquery = ( lwork.EQ.-1 )
356*
357 info = 0
358 IF( itype.LT.1 .OR. itype.GT.3 ) THEN
359 info = -1
360 ELSE IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
361 info = -2
362 ELSE IF( .NOT.( alleig .OR. valeig .OR. indeig ) ) THEN
363 info = -3
364 ELSE IF( .NOT.( upper .OR. lsame( uplo, 'L' ) ) ) THEN
365 info = -4
366 ELSE IF( n.LT.0 ) THEN
367 info = -5
368 ELSE IF( lda.LT.max( 1, n ) ) THEN
369 info = -7
370 ELSE IF( ldb.LT.max( 1, n ) ) THEN
371 info = -9
372 ELSE
373 IF( valeig ) THEN
374 IF( n.GT.0 .AND. vu.LE.vl )
375 $ info = -11
376 ELSE IF( indeig ) THEN
377 IF( il.LT.1 .OR. il.GT.max( 1, n ) ) THEN
378 info = -12
379 ELSE IF( iu.LT.min( n, il ) .OR. iu.GT.n ) THEN
380 info = -13
381 END IF
382 END IF
383 END IF
384 IF (info.EQ.0) THEN
385 IF (ldz.LT.1 .OR. (wantz .AND. ldz.LT.n)) THEN
386 info = -18
387 END IF
388 END IF
389*
390 IF( info.EQ.0 ) THEN
391 nb = ilaenv( 1, 'CHETRD', uplo, n, -1, -1, -1 )
392 lwkopt = max( 1, ( nb + 1 )*n )
393 work( 1 ) = sroundup_lwork(lwkopt)
394*
395 IF( lwork.LT.max( 1, 2*n ) .AND. .NOT.lquery ) THEN
396 info = -20
397 END IF
398 END IF
399*
400 IF( info.NE.0 ) THEN
401 CALL xerbla( 'CHEGVX', -info )
402 RETURN
403 ELSE IF( lquery ) THEN
404 RETURN
405 END IF
406*
407* Quick return if possible
408*
409 m = 0
410 IF( n.EQ.0 ) THEN
411 RETURN
412 END IF
413*
414* Form a Cholesky factorization of B.
415*
416 CALL cpotrf( uplo, n, b, ldb, info )
417 IF( info.NE.0 ) THEN
418 info = n + info
419 RETURN
420 END IF
421*
422* Transform problem to standard eigenvalue problem and solve.
423*
424 CALL chegst( itype, uplo, n, a, lda, b, ldb, info )
425 CALL cheevx( jobz, range, uplo, n, a, lda, vl, vu, il, iu,
426 $ abstol,
427 $ m, w, z, ldz, work, lwork, rwork, iwork, ifail,
428 $ info )
429*
430 IF( wantz ) THEN
431*
432* Backtransform eigenvectors to the original problem.
433*
434 IF( info.GT.0 )
435 $ m = info - 1
436 IF( itype.EQ.1 .OR. itype.EQ.2 ) THEN
437*
438* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
439* backtransform eigenvectors: x = inv(L)**H*y or inv(U)*y
440*
441 IF( upper ) THEN
442 trans = 'N'
443 ELSE
444 trans = 'C'
445 END IF
446*
447 CALL ctrsm( 'Left', uplo, trans, 'Non-unit', n, m, cone,
448 $ b,
449 $ ldb, z, ldz )
450*
451 ELSE IF( itype.EQ.3 ) THEN
452*
453* For B*A*x=(lambda)*x;
454* backtransform eigenvectors: x = L*y or U**H*y
455*
456 IF( upper ) THEN
457 trans = 'C'
458 ELSE
459 trans = 'N'
460 END IF
461*
462 CALL ctrmm( 'Left', uplo, trans, 'Non-unit', n, m, cone,
463 $ b,
464 $ ldb, z, ldz )
465 END IF
466 END IF
467*
468* Set WORK(1) to optimal complex workspace size.
469*
470 work( 1 ) = sroundup_lwork(lwkopt)
471*
472 RETURN
473*
474* End of CHEGVX
475*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine cheevx(jobz, range, uplo, n, a, lda, vl, vu, il, iu, abstol, m, w, z, ldz, work, lwork, rwork, iwork, ifail, info)
CHEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices
Definition cheevx.f:258
subroutine chegst(itype, uplo, n, a, lda, b, ldb, info)
CHEGST
Definition chegst.f:126
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:160
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine cpotrf(uplo, n, a, lda, info)
CPOTRF
Definition cpotrf.f:105
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
subroutine ctrmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
CTRMM
Definition ctrmm.f:177
subroutine ctrsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
CTRSM
Definition ctrsm.f:180
Here is the call graph for this function:
Here is the caller graph for this function: