LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ ztgsna()

subroutine ztgsna ( character job,
character howmny,
logical, dimension( * ) select,
integer n,
complex*16, dimension( lda, * ) a,
integer lda,
complex*16, dimension( ldb, * ) b,
integer ldb,
complex*16, dimension( ldvl, * ) vl,
integer ldvl,
complex*16, dimension( ldvr, * ) vr,
integer ldvr,
double precision, dimension( * ) s,
double precision, dimension( * ) dif,
integer mm,
integer m,
complex*16, dimension( * ) work,
integer lwork,
integer, dimension( * ) iwork,
integer info )

ZTGSNA

Download ZTGSNA + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> ZTGSNA estimates reciprocal condition numbers for specified
!> eigenvalues and/or eigenvectors of a matrix pair (A, B).
!>
!> (A, B) must be in generalized Schur canonical form, that is, A and
!> B are both upper triangular.
!> 
Parameters
[in]JOB
!>          JOB is CHARACTER*1
!>          Specifies whether condition numbers are required for
!>          eigenvalues (S) or eigenvectors (DIF):
!>          = 'E': for eigenvalues only (S);
!>          = 'V': for eigenvectors only (DIF);
!>          = 'B': for both eigenvalues and eigenvectors (S and DIF).
!> 
[in]HOWMNY
!>          HOWMNY is CHARACTER*1
!>          = 'A': compute condition numbers for all eigenpairs;
!>          = 'S': compute condition numbers for selected eigenpairs
!>                 specified by the array SELECT.
!> 
[in]SELECT
!>          SELECT is LOGICAL array, dimension (N)
!>          If HOWMNY = 'S', SELECT specifies the eigenpairs for which
!>          condition numbers are required. To select condition numbers
!>          for the corresponding j-th eigenvalue and/or eigenvector,
!>          SELECT(j) must be set to .TRUE..
!>          If HOWMNY = 'A', SELECT is not referenced.
!> 
[in]N
!>          N is INTEGER
!>          The order of the square matrix pair (A, B). N >= 0.
!> 
[in]A
!>          A is COMPLEX*16 array, dimension (LDA,N)
!>          The upper triangular matrix A in the pair (A,B).
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A. LDA >= max(1,N).
!> 
[in]B
!>          B is COMPLEX*16 array, dimension (LDB,N)
!>          The upper triangular matrix B in the pair (A, B).
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B. LDB >= max(1,N).
!> 
[in]VL
!>          VL is COMPLEX*16 array, dimension (LDVL,M)
!>          IF JOB = 'E' or 'B', VL must contain left eigenvectors of
!>          (A, B), corresponding to the eigenpairs specified by HOWMNY
!>          and SELECT.  The eigenvectors must be stored in consecutive
!>          columns of VL, as returned by ZTGEVC.
!>          If JOB = 'V', VL is not referenced.
!> 
[in]LDVL
!>          LDVL is INTEGER
!>          The leading dimension of the array VL. LDVL >= 1; and
!>          If JOB = 'E' or 'B', LDVL >= N.
!> 
[in]VR
!>          VR is COMPLEX*16 array, dimension (LDVR,M)
!>          IF JOB = 'E' or 'B', VR must contain right eigenvectors of
!>          (A, B), corresponding to the eigenpairs specified by HOWMNY
!>          and SELECT.  The eigenvectors must be stored in consecutive
!>          columns of VR, as returned by ZTGEVC.
!>          If JOB = 'V', VR is not referenced.
!> 
[in]LDVR
!>          LDVR is INTEGER
!>          The leading dimension of the array VR. LDVR >= 1;
!>          If JOB = 'E' or 'B', LDVR >= N.
!> 
[out]S
!>          S is DOUBLE PRECISION array, dimension (MM)
!>          If JOB = 'E' or 'B', the reciprocal condition numbers of the
!>          selected eigenvalues, stored in consecutive elements of the
!>          array.
!>          If JOB = 'V', S is not referenced.
!> 
[out]DIF
!>          DIF is DOUBLE PRECISION array, dimension (MM)
!>          If JOB = 'V' or 'B', the estimated reciprocal condition
!>          numbers of the selected eigenvectors, stored in consecutive
!>          elements of the array.
!>          If the eigenvalues cannot be reordered to compute DIF(j),
!>          DIF(j) is set to 0; this can only occur when the true value
!>          would be very small anyway.
!>          For each eigenvalue/vector specified by SELECT, DIF stores
!>          a Frobenius norm-based estimate of Difl.
!>          If JOB = 'E', DIF is not referenced.
!> 
[in]MM
!>          MM is INTEGER
!>          The number of elements in the arrays S and DIF. MM >= M.
!> 
[out]M
!>          M is INTEGER
!>          The number of elements of the arrays S and DIF used to store
!>          the specified condition numbers; for each selected eigenvalue
!>          one element is used. If HOWMNY = 'A', M is set to N.
!> 
[out]WORK
!>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The dimension of the array WORK. LWORK >= max(1,N).
!>          If JOB = 'V' or 'B', LWORK >= max(1,2*N*N).
!> 
[out]IWORK
!>          IWORK is INTEGER array, dimension (N+2)
!>          If JOB = 'E', IWORK is not referenced.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0: Successful exit
!>          < 0: If INFO = -i, the i-th argument had an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  The reciprocal of the condition number of the i-th generalized
!>  eigenvalue w = (a, b) is defined as
!>
!>          S(I) = (|v**HAu|**2 + |v**HBu|**2)**(1/2) / (norm(u)*norm(v))
!>
!>  where u and v are the right and left eigenvectors of (A, B)
!>  corresponding to w; |z| denotes the absolute value of the complex
!>  number, and norm(u) denotes the 2-norm of the vector u. The pair
!>  (a, b) corresponds to an eigenvalue w = a/b (= v**HAu/v**HBu) of the
!>  matrix pair (A, B). If both a and b equal zero, then (A,B) is
!>  singular and S(I) = -1 is returned.
!>
!>  An approximate error bound on the chordal distance between the i-th
!>  computed generalized eigenvalue w and the corresponding exact
!>  eigenvalue lambda is
!>
!>          chord(w, lambda) <=   EPS * norm(A, B) / S(I),
!>
!>  where EPS is the machine precision.
!>
!>  The reciprocal of the condition number of the right eigenvector u
!>  and left eigenvector v corresponding to the generalized eigenvalue w
!>  is defined as follows. Suppose
!>
!>                   (A, B) = ( a   *  ) ( b  *  )  1
!>                            ( 0  A22 ),( 0 B22 )  n-1
!>                              1  n-1     1 n-1
!>
!>  Then the reciprocal condition number DIF(I) is
!>
!>          Difl[(a, b), (A22, B22)]  = sigma-min( Zl )
!>
!>  where sigma-min(Zl) denotes the smallest singular value of
!>
!>         Zl = [ kron(a, In-1) -kron(1, A22) ]
!>              [ kron(b, In-1) -kron(1, B22) ].
!>
!>  Here In-1 is the identity matrix of size n-1 and X**H is the conjugate
!>  transpose of X. kron(X, Y) is the Kronecker product between the
!>  matrices X and Y.
!>
!>  We approximate the smallest singular value of Zl with an upper
!>  bound. This is done by ZLATDF.
!>
!>  An approximate error bound for a computed eigenvector VL(i) or
!>  VR(i) is given by
!>
!>                      EPS * norm(A, B) / DIF(i).
!>
!>  See ref. [2-3] for more details and further references.
!> 
Contributors:
Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden.
References:
!>
!>  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
!>      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
!>      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
!>      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
!>
!>  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
!>      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
!>      Estimation: Theory, Algorithms and Software, Report
!>      UMINF - 94.04, Department of Computing Science, Umea University,
!>      S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87.
!>      To appear in Numerical Algorithms, 1996.
!>
!>  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
!>      for Solving the Generalized Sylvester Equation and Estimating the
!>      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
!>      Department of Computing Science, Umea University, S-901 87 Umea,
!>      Sweden, December 1993, Revised April 1994, Also as LAPACK Working
!>      Note 75.
!>      To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996.
!> 

Definition at line 306 of file ztgsna.f.

309*
310* -- LAPACK computational routine --
311* -- LAPACK is a software package provided by Univ. of Tennessee, --
312* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
313*
314* .. Scalar Arguments ..
315 CHARACTER HOWMNY, JOB
316 INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, M, MM, N
317* ..
318* .. Array Arguments ..
319 LOGICAL SELECT( * )
320 INTEGER IWORK( * )
321 DOUBLE PRECISION DIF( * ), S( * )
322 COMPLEX*16 A( LDA, * ), B( LDB, * ), VL( LDVL, * ),
323 $ VR( LDVR, * ), WORK( * )
324* ..
325*
326* =====================================================================
327*
328* .. Parameters ..
329 DOUBLE PRECISION ZERO, ONE
330 INTEGER IDIFJB
331 parameter( zero = 0.0d+0, one = 1.0d+0, idifjb = 3 )
332* ..
333* .. Local Scalars ..
334 LOGICAL LQUERY, SOMCON, WANTBH, WANTDF, WANTS
335 INTEGER I, IERR, IFST, ILST, K, KS, LWMIN, N1, N2
336 DOUBLE PRECISION BIGNUM, COND, EPS, LNRM, RNRM, SCALE, SMLNUM
337 COMPLEX*16 YHAX, YHBX
338* ..
339* .. Local Arrays ..
340 COMPLEX*16 DUMMY( 1 ), DUMMY1( 1 )
341* ..
342* .. External Functions ..
343 LOGICAL LSAME
344 DOUBLE PRECISION DLAMCH, DLAPY2, DZNRM2
345 COMPLEX*16 ZDOTC
346 EXTERNAL lsame, dlamch, dlapy2, dznrm2,
347 $ zdotc
348* ..
349* .. External Subroutines ..
350 EXTERNAL xerbla, zgemv, zlacpy, ztgexc,
351 $ ztgsyl
352* ..
353* .. Intrinsic Functions ..
354 INTRINSIC abs, dcmplx, max
355* ..
356* .. Executable Statements ..
357*
358* Decode and test the input parameters
359*
360 wantbh = lsame( job, 'B' )
361 wants = lsame( job, 'E' ) .OR. wantbh
362 wantdf = lsame( job, 'V' ) .OR. wantbh
363*
364 somcon = lsame( howmny, 'S' )
365*
366 info = 0
367 lquery = ( lwork.EQ.-1 )
368*
369 IF( .NOT.wants .AND. .NOT.wantdf ) THEN
370 info = -1
371 ELSE IF( .NOT.lsame( howmny, 'A' ) .AND. .NOT.somcon ) THEN
372 info = -2
373 ELSE IF( n.LT.0 ) THEN
374 info = -4
375 ELSE IF( lda.LT.max( 1, n ) ) THEN
376 info = -6
377 ELSE IF( ldb.LT.max( 1, n ) ) THEN
378 info = -8
379 ELSE IF( wants .AND. ldvl.LT.n ) THEN
380 info = -10
381 ELSE IF( wants .AND. ldvr.LT.n ) THEN
382 info = -12
383 ELSE
384*
385* Set M to the number of eigenpairs for which condition numbers
386* are required, and test MM.
387*
388 IF( somcon ) THEN
389 m = 0
390 DO 10 k = 1, n
391 IF( SELECT( k ) )
392 $ m = m + 1
393 10 CONTINUE
394 ELSE
395 m = n
396 END IF
397*
398 IF( n.EQ.0 ) THEN
399 lwmin = 1
400 ELSE IF( lsame( job, 'V' ) .OR. lsame( job, 'B' ) ) THEN
401 lwmin = 2*n*n
402 ELSE
403 lwmin = n
404 END IF
405 work( 1 ) = lwmin
406*
407 IF( mm.LT.m ) THEN
408 info = -15
409 ELSE IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
410 info = -18
411 END IF
412 END IF
413*
414 IF( info.NE.0 ) THEN
415 CALL xerbla( 'ZTGSNA', -info )
416 RETURN
417 ELSE IF( lquery ) THEN
418 RETURN
419 END IF
420*
421* Quick return if possible
422*
423 IF( n.EQ.0 )
424 $ RETURN
425*
426* Get machine constants
427*
428 eps = dlamch( 'P' )
429 smlnum = dlamch( 'S' ) / eps
430 bignum = one / smlnum
431 ks = 0
432 DO 20 k = 1, n
433*
434* Determine whether condition numbers are required for the k-th
435* eigenpair.
436*
437 IF( somcon ) THEN
438 IF( .NOT.SELECT( k ) )
439 $ GO TO 20
440 END IF
441*
442 ks = ks + 1
443*
444 IF( wants ) THEN
445*
446* Compute the reciprocal condition number of the k-th
447* eigenvalue.
448*
449 rnrm = dznrm2( n, vr( 1, ks ), 1 )
450 lnrm = dznrm2( n, vl( 1, ks ), 1 )
451 CALL zgemv( 'N', n, n, dcmplx( one, zero ), a, lda,
452 $ vr( 1, ks ), 1, dcmplx( zero, zero ), work, 1 )
453 yhax = zdotc( n, work, 1, vl( 1, ks ), 1 )
454 CALL zgemv( 'N', n, n, dcmplx( one, zero ), b, ldb,
455 $ vr( 1, ks ), 1, dcmplx( zero, zero ), work, 1 )
456 yhbx = zdotc( n, work, 1, vl( 1, ks ), 1 )
457 cond = dlapy2( abs( yhax ), abs( yhbx ) )
458 IF( cond.EQ.zero ) THEN
459 s( ks ) = -one
460 ELSE
461 s( ks ) = cond / ( rnrm*lnrm )
462 END IF
463 END IF
464*
465 IF( wantdf ) THEN
466 IF( n.EQ.1 ) THEN
467 dif( ks ) = dlapy2( abs( a( 1, 1 ) ), abs( b( 1,
468 $ 1 ) ) )
469 ELSE
470*
471* Estimate the reciprocal condition number of the k-th
472* eigenvectors.
473*
474* Copy the matrix (A, B) to the array WORK and move the
475* (k,k)th pair to the (1,1) position.
476*
477 CALL zlacpy( 'Full', n, n, a, lda, work, n )
478 CALL zlacpy( 'Full', n, n, b, ldb, work( n*n+1 ), n )
479 ifst = k
480 ilst = 1
481*
482 CALL ztgexc( .false., .false., n, work, n,
483 $ work( n*n+1 ),
484 $ n, dummy, 1, dummy1, 1, ifst, ilst, ierr )
485*
486 IF( ierr.GT.0 ) THEN
487*
488* Ill-conditioned problem - swap rejected.
489*
490 dif( ks ) = zero
491 ELSE
492*
493* Reordering successful, solve generalized Sylvester
494* equation for R and L,
495* A22 * R - L * A11 = A12
496* B22 * R - L * B11 = B12,
497* and compute estimate of Difl[(A11,B11), (A22, B22)].
498*
499 n1 = 1
500 n2 = n - n1
501 i = n*n + 1
502 CALL ztgsyl( 'N', idifjb, n2, n1,
503 $ work( n*n1+n1+1 ),
504 $ n, work, n, work( n1+1 ), n,
505 $ work( n*n1+n1+i ), n, work( i ), n,
506 $ work( n1+i ), n, scale, dif( ks ), dummy,
507 $ 1, iwork, ierr )
508 END IF
509 END IF
510 END IF
511*
512 20 CONTINUE
513 work( 1 ) = lwmin
514 RETURN
515*
516* End of ZTGSNA
517*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
complex *16 function zdotc(n, zx, incx, zy, incy)
ZDOTC
Definition zdotc.f:83
subroutine zgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
ZGEMV
Definition zgemv.f:160
subroutine zlacpy(uplo, m, n, a, lda, b, ldb)
ZLACPY copies all or part of one two-dimensional array to another.
Definition zlacpy.f:101
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
double precision function dlapy2(x, y)
DLAPY2 returns sqrt(x2+y2).
Definition dlapy2.f:61
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
real(wp) function dznrm2(n, x, incx)
DZNRM2
Definition dznrm2.f90:90
subroutine ztgexc(wantq, wantz, n, a, lda, b, ldb, q, ldq, z, ldz, ifst, ilst, info)
ZTGEXC
Definition ztgexc.f:198
subroutine ztgsyl(trans, ijob, m, n, a, lda, b, ldb, c, ldc, d, ldd, e, lde, f, ldf, scale, dif, work, lwork, iwork, info)
ZTGSYL
Definition ztgsyl.f:294
Here is the call graph for this function:
Here is the caller graph for this function: