LAPACK  3.10.0
LAPACK: Linear Algebra PACKage
clavhe.f
Go to the documentation of this file.
1 *> \brief \b CLAVHE
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE CLAVHE( UPLO, TRANS, DIAG, N, NRHS, A, LDA, IPIV, B,
12 * LDB, INFO )
13 *
14 * .. Scalar Arguments ..
15 * CHARACTER DIAG, TRANS, UPLO
16 * INTEGER INFO, LDA, LDB, N, NRHS
17 * ..
18 * .. Array Arguments ..
19 * INTEGER IPIV( * )
20 * COMPLEX A( LDA, * ), B( LDB, * )
21 * ..
22 *
23 *
24 *> \par Purpose:
25 * =============
26 *>
27 *> \verbatim
28 *>
29 *> CLAVHE performs one of the matrix-vector operations
30 *> x := A*x or x := A^H*x,
31 *> where x is an N element vector and A is one of the factors
32 *> from the block U*D*U' or L*D*L' factorization computed by CHETRF.
33 *>
34 *> If TRANS = 'N', multiplies by U or U * D (or L or L * D)
35 *> If TRANS = 'C', multiplies by U' or D * U' (or L' or D * L')
36 *> \endverbatim
37 *
38 * Arguments:
39 * ==========
40 *
41 *> \param[in] UPLO
42 *> \verbatim
43 *> UPLO is CHARACTER*1
44 *> Specifies whether the factor stored in A is upper or lower
45 *> triangular.
46 *> = 'U': Upper triangular
47 *> = 'L': Lower triangular
48 *> \endverbatim
49 *>
50 *> \param[in] TRANS
51 *> \verbatim
52 *> TRANS is CHARACTER*1
53 *> Specifies the operation to be performed:
54 *> = 'N': x := A*x
55 *> = 'C': x := A^H*x
56 *> \endverbatim
57 *>
58 *> \param[in] DIAG
59 *> \verbatim
60 *> DIAG is CHARACTER*1
61 *> Specifies whether or not the diagonal blocks are unit
62 *> matrices. If the diagonal blocks are assumed to be unit,
63 *> then A = U or A = L, otherwise A = U*D or A = L*D.
64 *> = 'U': Diagonal blocks are assumed to be unit matrices.
65 *> = 'N': Diagonal blocks are assumed to be non-unit matrices.
66 *> \endverbatim
67 *>
68 *> \param[in] N
69 *> \verbatim
70 *> N is INTEGER
71 *> The number of rows and columns of the matrix A. N >= 0.
72 *> \endverbatim
73 *>
74 *> \param[in] NRHS
75 *> \verbatim
76 *> NRHS is INTEGER
77 *> The number of right hand sides, i.e., the number of vectors
78 *> x to be multiplied by A. NRHS >= 0.
79 *> \endverbatim
80 *>
81 *> \param[in] A
82 *> \verbatim
83 *> A is COMPLEX array, dimension (LDA,N)
84 *> The block diagonal matrix D and the multipliers used to
85 *> obtain the factor U or L as computed by CHETRF_ROOK.
86 *> Stored as a 2-D triangular matrix.
87 *> \endverbatim
88 *>
89 *> \param[in] LDA
90 *> \verbatim
91 *> LDA is INTEGER
92 *> The leading dimension of the array A. LDA >= max(1,N).
93 *> \endverbatim
94 *>
95 *> \param[in] IPIV
96 *> \verbatim
97 *> IPIV is INTEGER array, dimension (N)
98 *> Details of the interchanges and the block structure of D,
99 *> as determined by CHETRF.
100 *>
101 *> If UPLO = 'U':
102 *> If IPIV(k) > 0, then rows and columns k and IPIV(k)
103 *> were interchanged and D(k,k) is a 1-by-1 diagonal block.
104 *> (If IPIV( k ) = k, no interchange was done).
105 *>
106 *> If IPIV(k) = IPIV(k-1) < 0, then rows and
107 *> columns k-1 and -IPIV(k) were interchanged,
108 *> D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
109 *>
110 *> If UPLO = 'L':
111 *> If IPIV(k) > 0, then rows and columns k and IPIV(k)
112 *> were interchanged and D(k,k) is a 1-by-1 diagonal block.
113 *> (If IPIV( k ) = k, no interchange was done).
114 *>
115 *> If IPIV(k) = IPIV(k+1) < 0, then rows and
116 *> columns k+1 and -IPIV(k) were interchanged,
117 *> D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
118 *> \endverbatim
119 *>
120 *> \param[in,out] B
121 *> \verbatim
122 *> B is COMPLEX array, dimension (LDB,NRHS)
123 *> On entry, B contains NRHS vectors of length N.
124 *> On exit, B is overwritten with the product A * B.
125 *> \endverbatim
126 *>
127 *> \param[in] LDB
128 *> \verbatim
129 *> LDB is INTEGER
130 *> The leading dimension of the array B. LDB >= max(1,N).
131 *> \endverbatim
132 *>
133 *> \param[out] INFO
134 *> \verbatim
135 *> INFO is INTEGER
136 *> = 0: successful exit
137 *> < 0: if INFO = -k, the k-th argument had an illegal value
138 *> \endverbatim
139 *
140 * Authors:
141 * ========
142 *
143 *> \author Univ. of Tennessee
144 *> \author Univ. of California Berkeley
145 *> \author Univ. of Colorado Denver
146 *> \author NAG Ltd.
147 *
148 *> \ingroup complex_lin
149 *
150 * =====================================================================
151  SUBROUTINE clavhe( UPLO, TRANS, DIAG, N, NRHS, A, LDA, IPIV, B,
152  $ LDB, INFO )
153 *
154 * -- LAPACK test routine --
155 * -- LAPACK is a software package provided by Univ. of Tennessee, --
156 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
157 *
158 * .. Scalar Arguments ..
159  CHARACTER DIAG, TRANS, UPLO
160  INTEGER INFO, LDA, LDB, N, NRHS
161 * ..
162 * .. Array Arguments ..
163  INTEGER IPIV( * )
164  COMPLEX A( LDA, * ), B( LDB, * )
165 * ..
166 *
167 * =====================================================================
168 *
169 * .. Parameters ..
170  COMPLEX ONE
171  parameter( one = ( 1.0e+0, 0.0e+0 ) )
172 * ..
173 * .. Local Scalars ..
174  LOGICAL NOUNIT
175  INTEGER J, K, KP
176  COMPLEX D11, D12, D21, D22, T1, T2
177 * ..
178 * .. External Functions ..
179  LOGICAL LSAME
180  EXTERNAL lsame
181 * ..
182 * .. External Subroutines ..
183  EXTERNAL cgemv, cgeru, clacgv, cscal, cswap, xerbla
184 * ..
185 * .. Intrinsic Functions ..
186  INTRINSIC abs, conjg, max
187 * ..
188 * .. Executable Statements ..
189 *
190 * Test the input parameters.
191 *
192  info = 0
193  IF( .NOT.lsame( uplo, 'U' ) .AND. .NOT.lsame( uplo, 'L' ) ) THEN
194  info = -1
195  ELSE IF( .NOT.lsame( trans, 'N' ) .AND. .NOT.lsame( trans, 'C' ) )
196  $ THEN
197  info = -2
198  ELSE IF( .NOT.lsame( diag, 'U' ) .AND. .NOT.lsame( diag, 'N' ) )
199  $ THEN
200  info = -3
201  ELSE IF( n.LT.0 ) THEN
202  info = -4
203  ELSE IF( lda.LT.max( 1, n ) ) THEN
204  info = -6
205  ELSE IF( ldb.LT.max( 1, n ) ) THEN
206  info = -9
207  END IF
208  IF( info.NE.0 ) THEN
209  CALL xerbla( 'CLAVHE ', -info )
210  RETURN
211  END IF
212 *
213 * Quick return if possible.
214 *
215  IF( n.EQ.0 )
216  $ RETURN
217 *
218  nounit = lsame( diag, 'N' )
219 *------------------------------------------
220 *
221 * Compute B := A * B (No transpose)
222 *
223 *------------------------------------------
224  IF( lsame( trans, 'N' ) ) THEN
225 *
226 * Compute B := U*B
227 * where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
228 *
229  IF( lsame( uplo, 'U' ) ) THEN
230 *
231 * Loop forward applying the transformations.
232 *
233  k = 1
234  10 CONTINUE
235  IF( k.GT.n )
236  $ GO TO 30
237  IF( ipiv( k ).GT.0 ) THEN
238 *
239 * 1 x 1 pivot block
240 *
241 * Multiply by the diagonal element if forming U * D.
242 *
243  IF( nounit )
244  $ CALL cscal( nrhs, a( k, k ), b( k, 1 ), ldb )
245 *
246 * Multiply by P(K) * inv(U(K)) if K > 1.
247 *
248  IF( k.GT.1 ) THEN
249 *
250 * Apply the transformation.
251 *
252  CALL cgeru( k-1, nrhs, one, a( 1, k ), 1, b( k, 1 ),
253  $ ldb, b( 1, 1 ), ldb )
254 *
255 * Interchange if P(K) != I.
256 *
257  kp = ipiv( k )
258  IF( kp.NE.k )
259  $ CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
260  END IF
261  k = k + 1
262  ELSE
263 *
264 * 2 x 2 pivot block
265 *
266 * Multiply by the diagonal block if forming U * D.
267 *
268  IF( nounit ) THEN
269  d11 = a( k, k )
270  d22 = a( k+1, k+1 )
271  d12 = a( k, k+1 )
272  d21 = conjg( d12 )
273  DO 20 j = 1, nrhs
274  t1 = b( k, j )
275  t2 = b( k+1, j )
276  b( k, j ) = d11*t1 + d12*t2
277  b( k+1, j ) = d21*t1 + d22*t2
278  20 CONTINUE
279  END IF
280 *
281 * Multiply by P(K) * inv(U(K)) if K > 1.
282 *
283  IF( k.GT.1 ) THEN
284 *
285 * Apply the transformations.
286 *
287  CALL cgeru( k-1, nrhs, one, a( 1, k ), 1, b( k, 1 ),
288  $ ldb, b( 1, 1 ), ldb )
289  CALL cgeru( k-1, nrhs, one, a( 1, k+1 ), 1,
290  $ b( k+1, 1 ), ldb, b( 1, 1 ), ldb )
291 *
292 * Interchange if P(K) != I.
293 *
294  kp = abs( ipiv( k ) )
295  IF( kp.NE.k )
296  $ CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
297  END IF
298  k = k + 2
299  END IF
300  GO TO 10
301  30 CONTINUE
302 *
303 * Compute B := L*B
304 * where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m)) .
305 *
306  ELSE
307 *
308 * Loop backward applying the transformations to B.
309 *
310  k = n
311  40 CONTINUE
312  IF( k.LT.1 )
313  $ GO TO 60
314 *
315 * Test the pivot index. If greater than zero, a 1 x 1
316 * pivot was used, otherwise a 2 x 2 pivot was used.
317 *
318  IF( ipiv( k ).GT.0 ) THEN
319 *
320 * 1 x 1 pivot block:
321 *
322 * Multiply by the diagonal element if forming L * D.
323 *
324  IF( nounit )
325  $ CALL cscal( nrhs, a( k, k ), b( k, 1 ), ldb )
326 *
327 * Multiply by P(K) * inv(L(K)) if K < N.
328 *
329  IF( k.NE.n ) THEN
330  kp = ipiv( k )
331 *
332 * Apply the transformation.
333 *
334  CALL cgeru( n-k, nrhs, one, a( k+1, k ), 1,
335  $ b( k, 1 ), ldb, b( k+1, 1 ), ldb )
336 *
337 * Interchange if a permutation was applied at the
338 * K-th step of the factorization.
339 *
340  IF( kp.NE.k )
341  $ CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
342  END IF
343  k = k - 1
344 *
345  ELSE
346 *
347 * 2 x 2 pivot block:
348 *
349 * Multiply by the diagonal block if forming L * D.
350 *
351  IF( nounit ) THEN
352  d11 = a( k-1, k-1 )
353  d22 = a( k, k )
354  d21 = a( k, k-1 )
355  d12 = conjg( d21 )
356  DO 50 j = 1, nrhs
357  t1 = b( k-1, j )
358  t2 = b( k, j )
359  b( k-1, j ) = d11*t1 + d12*t2
360  b( k, j ) = d21*t1 + d22*t2
361  50 CONTINUE
362  END IF
363 *
364 * Multiply by P(K) * inv(L(K)) if K < N.
365 *
366  IF( k.NE.n ) THEN
367 *
368 * Apply the transformation.
369 *
370  CALL cgeru( n-k, nrhs, one, a( k+1, k ), 1,
371  $ b( k, 1 ), ldb, b( k+1, 1 ), ldb )
372  CALL cgeru( n-k, nrhs, one, a( k+1, k-1 ), 1,
373  $ b( k-1, 1 ), ldb, b( k+1, 1 ), ldb )
374 *
375 * Interchange if a permutation was applied at the
376 * K-th step of the factorization.
377 *
378  kp = abs( ipiv( k ) )
379  IF( kp.NE.k )
380  $ CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
381  END IF
382  k = k - 2
383  END IF
384  GO TO 40
385  60 CONTINUE
386  END IF
387 *--------------------------------------------------
388 *
389 * Compute B := A^H * B (conjugate transpose)
390 *
391 *--------------------------------------------------
392  ELSE
393 *
394 * Form B := U^H*B
395 * where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
396 * and U^H = inv(U^H(1))*P(1)* ... *inv(U^H(m))*P(m)
397 *
398  IF( lsame( uplo, 'U' ) ) THEN
399 *
400 * Loop backward applying the transformations.
401 *
402  k = n
403  70 IF( k.LT.1 )
404  $ GO TO 90
405 *
406 * 1 x 1 pivot block.
407 *
408  IF( ipiv( k ).GT.0 ) THEN
409  IF( k.GT.1 ) THEN
410 *
411 * Interchange if P(K) != I.
412 *
413  kp = ipiv( k )
414  IF( kp.NE.k )
415  $ CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
416 *
417 * Apply the transformation
418 * y = y - B' conjg(x),
419 * where x is a column of A and y is a row of B.
420 *
421  CALL clacgv( nrhs, b( k, 1 ), ldb )
422  CALL cgemv( 'Conjugate', k-1, nrhs, one, b, ldb,
423  $ a( 1, k ), 1, one, b( k, 1 ), ldb )
424  CALL clacgv( nrhs, b( k, 1 ), ldb )
425  END IF
426  IF( nounit )
427  $ CALL cscal( nrhs, a( k, k ), b( k, 1 ), ldb )
428  k = k - 1
429 *
430 * 2 x 2 pivot block.
431 *
432  ELSE
433  IF( k.GT.2 ) THEN
434 *
435 * Interchange if P(K) != I.
436 *
437  kp = abs( ipiv( k ) )
438  IF( kp.NE.k-1 )
439  $ CALL cswap( nrhs, b( k-1, 1 ), ldb, b( kp, 1 ),
440  $ ldb )
441 *
442 * Apply the transformations
443 * y = y - B' conjg(x),
444 * where x is a block column of A and y is a block
445 * row of B.
446 *
447  CALL clacgv( nrhs, b( k, 1 ), ldb )
448  CALL cgemv( 'Conjugate', k-2, nrhs, one, b, ldb,
449  $ a( 1, k ), 1, one, b( k, 1 ), ldb )
450  CALL clacgv( nrhs, b( k, 1 ), ldb )
451 *
452  CALL clacgv( nrhs, b( k-1, 1 ), ldb )
453  CALL cgemv( 'Conjugate', k-2, nrhs, one, b, ldb,
454  $ a( 1, k-1 ), 1, one, b( k-1, 1 ), ldb )
455  CALL clacgv( nrhs, b( k-1, 1 ), ldb )
456  END IF
457 *
458 * Multiply by the diagonal block if non-unit.
459 *
460  IF( nounit ) THEN
461  d11 = a( k-1, k-1 )
462  d22 = a( k, k )
463  d12 = a( k-1, k )
464  d21 = conjg( d12 )
465  DO 80 j = 1, nrhs
466  t1 = b( k-1, j )
467  t2 = b( k, j )
468  b( k-1, j ) = d11*t1 + d12*t2
469  b( k, j ) = d21*t1 + d22*t2
470  80 CONTINUE
471  END IF
472  k = k - 2
473  END IF
474  GO TO 70
475  90 CONTINUE
476 *
477 * Form B := L^H*B
478 * where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m))
479 * and L^H = inv(L^H(m))*P(m)* ... *inv(L^H(1))*P(1)
480 *
481  ELSE
482 *
483 * Loop forward applying the L-transformations.
484 *
485  k = 1
486  100 CONTINUE
487  IF( k.GT.n )
488  $ GO TO 120
489 *
490 * 1 x 1 pivot block
491 *
492  IF( ipiv( k ).GT.0 ) THEN
493  IF( k.LT.n ) THEN
494 *
495 * Interchange if P(K) != I.
496 *
497  kp = ipiv( k )
498  IF( kp.NE.k )
499  $ CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
500 *
501 * Apply the transformation
502 *
503  CALL clacgv( nrhs, b( k, 1 ), ldb )
504  CALL cgemv( 'Conjugate', n-k, nrhs, one, b( k+1, 1 ),
505  $ ldb, a( k+1, k ), 1, one, b( k, 1 ), ldb )
506  CALL clacgv( nrhs, b( k, 1 ), ldb )
507  END IF
508  IF( nounit )
509  $ CALL cscal( nrhs, a( k, k ), b( k, 1 ), ldb )
510  k = k + 1
511 *
512 * 2 x 2 pivot block.
513 *
514  ELSE
515  IF( k.LT.n-1 ) THEN
516 *
517 * Interchange if P(K) != I.
518 *
519  kp = abs( ipiv( k ) )
520  IF( kp.NE.k+1 )
521  $ CALL cswap( nrhs, b( k+1, 1 ), ldb, b( kp, 1 ),
522  $ ldb )
523 *
524 * Apply the transformation
525 *
526  CALL clacgv( nrhs, b( k+1, 1 ), ldb )
527  CALL cgemv( 'Conjugate', n-k-1, nrhs, one,
528  $ b( k+2, 1 ), ldb, a( k+2, k+1 ), 1, one,
529  $ b( k+1, 1 ), ldb )
530  CALL clacgv( nrhs, b( k+1, 1 ), ldb )
531 *
532  CALL clacgv( nrhs, b( k, 1 ), ldb )
533  CALL cgemv( 'Conjugate', n-k-1, nrhs, one,
534  $ b( k+2, 1 ), ldb, a( k+2, k ), 1, one,
535  $ b( k, 1 ), ldb )
536  CALL clacgv( nrhs, b( k, 1 ), ldb )
537  END IF
538 *
539 * Multiply by the diagonal block if non-unit.
540 *
541  IF( nounit ) THEN
542  d11 = a( k, k )
543  d22 = a( k+1, k+1 )
544  d21 = a( k+1, k )
545  d12 = conjg( d21 )
546  DO 110 j = 1, nrhs
547  t1 = b( k, j )
548  t2 = b( k+1, j )
549  b( k, j ) = d11*t1 + d12*t2
550  b( k+1, j ) = d21*t1 + d22*t2
551  110 CONTINUE
552  END IF
553  k = k + 2
554  END IF
555  GO TO 100
556  120 CONTINUE
557  END IF
558 *
559  END IF
560  RETURN
561 *
562 * End of CLAVHE
563 *
564  END
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
subroutine cswap(N, CX, INCX, CY, INCY)
CSWAP
Definition: cswap.f:81
subroutine cscal(N, CA, CX, INCX)
CSCAL
Definition: cscal.f:78
subroutine cgemv(TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
CGEMV
Definition: cgemv.f:158
subroutine cgeru(M, N, ALPHA, X, INCX, Y, INCY, A, LDA)
CGERU
Definition: cgeru.f:130
subroutine clavhe(UPLO, TRANS, DIAG, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
CLAVHE
Definition: clavhe.f:153
subroutine clacgv(N, X, INCX)
CLACGV conjugates a complex vector.
Definition: clacgv.f:74