LAPACK 3.11.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
sormrq.f
Go to the documentation of this file.
1*> \brief \b SORMRQ
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download SORMRQ + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sormrq.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sormrq.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sormrq.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE SORMRQ( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
22* WORK, LWORK, INFO )
23*
24* .. Scalar Arguments ..
25* CHARACTER SIDE, TRANS
26* INTEGER INFO, K, LDA, LDC, LWORK, M, N
27* ..
28* .. Array Arguments ..
29* REAL A( LDA, * ), C( LDC, * ), TAU( * ),
30* $ WORK( * )
31* ..
32*
33*
34*> \par Purpose:
35* =============
36*>
37*> \verbatim
38*>
39*> SORMRQ overwrites the general real M-by-N matrix C with
40*>
41*> SIDE = 'L' SIDE = 'R'
42*> TRANS = 'N': Q * C C * Q
43*> TRANS = 'T': Q**T * C C * Q**T
44*>
45*> where Q is a real orthogonal matrix defined as the product of k
46*> elementary reflectors
47*>
48*> Q = H(1) H(2) . . . H(k)
49*>
50*> as returned by SGERQF. Q is of order M if SIDE = 'L' and of order N
51*> if SIDE = 'R'.
52*> \endverbatim
53*
54* Arguments:
55* ==========
56*
57*> \param[in] SIDE
58*> \verbatim
59*> SIDE is CHARACTER*1
60*> = 'L': apply Q or Q**T from the Left;
61*> = 'R': apply Q or Q**T from the Right.
62*> \endverbatim
63*>
64*> \param[in] TRANS
65*> \verbatim
66*> TRANS is CHARACTER*1
67*> = 'N': No transpose, apply Q;
68*> = 'T': Transpose, apply Q**T.
69*> \endverbatim
70*>
71*> \param[in] M
72*> \verbatim
73*> M is INTEGER
74*> The number of rows of the matrix C. M >= 0.
75*> \endverbatim
76*>
77*> \param[in] N
78*> \verbatim
79*> N is INTEGER
80*> The number of columns of the matrix C. N >= 0.
81*> \endverbatim
82*>
83*> \param[in] K
84*> \verbatim
85*> K is INTEGER
86*> The number of elementary reflectors whose product defines
87*> the matrix Q.
88*> If SIDE = 'L', M >= K >= 0;
89*> if SIDE = 'R', N >= K >= 0.
90*> \endverbatim
91*>
92*> \param[in] A
93*> \verbatim
94*> A is REAL array, dimension
95*> (LDA,M) if SIDE = 'L',
96*> (LDA,N) if SIDE = 'R'
97*> The i-th row must contain the vector which defines the
98*> elementary reflector H(i), for i = 1,2,...,k, as returned by
99*> SGERQF in the last k rows of its array argument A.
100*> \endverbatim
101*>
102*> \param[in] LDA
103*> \verbatim
104*> LDA is INTEGER
105*> The leading dimension of the array A. LDA >= max(1,K).
106*> \endverbatim
107*>
108*> \param[in] TAU
109*> \verbatim
110*> TAU is REAL array, dimension (K)
111*> TAU(i) must contain the scalar factor of the elementary
112*> reflector H(i), as returned by SGERQF.
113*> \endverbatim
114*>
115*> \param[in,out] C
116*> \verbatim
117*> C is REAL array, dimension (LDC,N)
118*> On entry, the M-by-N matrix C.
119*> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
120*> \endverbatim
121*>
122*> \param[in] LDC
123*> \verbatim
124*> LDC is INTEGER
125*> The leading dimension of the array C. LDC >= max(1,M).
126*> \endverbatim
127*>
128*> \param[out] WORK
129*> \verbatim
130*> WORK is REAL array, dimension (MAX(1,LWORK))
131*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
132*> \endverbatim
133*>
134*> \param[in] LWORK
135*> \verbatim
136*> LWORK is INTEGER
137*> The dimension of the array WORK.
138*> If SIDE = 'L', LWORK >= max(1,N);
139*> if SIDE = 'R', LWORK >= max(1,M).
140*> For good performance, LWORK should generally be larger.
141*>
142*> If LWORK = -1, then a workspace query is assumed; the routine
143*> only calculates the optimal size of the WORK array, returns
144*> this value as the first entry of the WORK array, and no error
145*> message related to LWORK is issued by XERBLA.
146*> \endverbatim
147*>
148*> \param[out] INFO
149*> \verbatim
150*> INFO is INTEGER
151*> = 0: successful exit
152*> < 0: if INFO = -i, the i-th argument had an illegal value
153*> \endverbatim
154*
155* Authors:
156* ========
157*
158*> \author Univ. of Tennessee
159*> \author Univ. of California Berkeley
160*> \author Univ. of Colorado Denver
161*> \author NAG Ltd.
162*
163*> \ingroup realOTHERcomputational
164*
165* =====================================================================
166 SUBROUTINE sormrq( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
167 $ WORK, LWORK, INFO )
168*
169* -- LAPACK computational routine --
170* -- LAPACK is a software package provided by Univ. of Tennessee, --
171* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
172*
173* .. Scalar Arguments ..
174 CHARACTER SIDE, TRANS
175 INTEGER INFO, K, LDA, LDC, LWORK, M, N
176* ..
177* .. Array Arguments ..
178 REAL A( LDA, * ), C( LDC, * ), TAU( * ),
179 $ work( * )
180* ..
181*
182* =====================================================================
183*
184* .. Parameters ..
185 INTEGER NBMAX, LDT, TSIZE
186 parameter( nbmax = 64, ldt = nbmax+1,
187 $ tsize = ldt*nbmax )
188* ..
189* .. Local Scalars ..
190 LOGICAL LEFT, LQUERY, NOTRAN
191 CHARACTER TRANST
192 INTEGER I, I1, I2, I3, IB, IINFO, IWT, LDWORK, LWKOPT,
193 $ mi, nb, nbmin, ni, nq, nw
194* ..
195* .. External Functions ..
196 LOGICAL LSAME
197 INTEGER ILAENV
198 EXTERNAL lsame, ilaenv
199* ..
200* .. External Subroutines ..
201 EXTERNAL slarfb, slarft, sormr2, xerbla
202* ..
203* .. Intrinsic Functions ..
204 INTRINSIC max, min
205* ..
206* .. Executable Statements ..
207*
208* Test the input arguments
209*
210 info = 0
211 left = lsame( side, 'L' )
212 notran = lsame( trans, 'N' )
213 lquery = ( lwork.EQ.-1 )
214*
215* NQ is the order of Q and NW is the minimum dimension of WORK
216*
217 IF( left ) THEN
218 nq = m
219 nw = max( 1, n )
220 ELSE
221 nq = n
222 nw = max( 1, m )
223 END IF
224 IF( .NOT.left .AND. .NOT.lsame( side, 'R' ) ) THEN
225 info = -1
226 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'T' ) ) THEN
227 info = -2
228 ELSE IF( m.LT.0 ) THEN
229 info = -3
230 ELSE IF( n.LT.0 ) THEN
231 info = -4
232 ELSE IF( k.LT.0 .OR. k.GT.nq ) THEN
233 info = -5
234 ELSE IF( lda.LT.max( 1, k ) ) THEN
235 info = -7
236 ELSE IF( ldc.LT.max( 1, m ) ) THEN
237 info = -10
238 ELSE IF( lwork.LT.nw .AND. .NOT.lquery ) THEN
239 info = -12
240 END IF
241*
242 IF( info.EQ.0 ) THEN
243*
244* Compute the workspace requirements
245*
246 IF( m.EQ.0 .OR. n.EQ.0 ) THEN
247 lwkopt = 1
248 ELSE
249 nb = min( nbmax, ilaenv( 1, 'SORMRQ', side // trans, m, n,
250 $ k, -1 ) )
251 lwkopt = nw*nb + tsize
252 END IF
253 work( 1 ) = lwkopt
254 END IF
255*
256 IF( info.NE.0 ) THEN
257 CALL xerbla( 'SORMRQ', -info )
258 RETURN
259 ELSE IF( lquery ) THEN
260 RETURN
261 END IF
262*
263* Quick return if possible
264*
265 IF( m.EQ.0 .OR. n.EQ.0 ) THEN
266 RETURN
267 END IF
268*
269 nbmin = 2
270 ldwork = nw
271 IF( nb.GT.1 .AND. nb.LT.k ) THEN
272 IF( lwork.LT.lwkopt ) THEN
273 nb = (lwork-tsize) / ldwork
274 nbmin = max( 2, ilaenv( 2, 'SORMRQ', side // trans, m, n, k,
275 $ -1 ) )
276 END IF
277 END IF
278*
279 IF( nb.LT.nbmin .OR. nb.GE.k ) THEN
280*
281* Use unblocked code
282*
283 CALL sormr2( side, trans, m, n, k, a, lda, tau, c, ldc, work,
284 $ iinfo )
285 ELSE
286*
287* Use blocked code
288*
289 iwt = 1 + nw*nb
290 IF( ( left .AND. .NOT.notran ) .OR.
291 $ ( .NOT.left .AND. notran ) ) THEN
292 i1 = 1
293 i2 = k
294 i3 = nb
295 ELSE
296 i1 = ( ( k-1 ) / nb )*nb + 1
297 i2 = 1
298 i3 = -nb
299 END IF
300*
301 IF( left ) THEN
302 ni = n
303 ELSE
304 mi = m
305 END IF
306*
307 IF( notran ) THEN
308 transt = 'T'
309 ELSE
310 transt = 'N'
311 END IF
312*
313 DO 10 i = i1, i2, i3
314 ib = min( nb, k-i+1 )
315*
316* Form the triangular factor of the block reflector
317* H = H(i+ib-1) . . . H(i+1) H(i)
318*
319 CALL slarft( 'Backward', 'Rowwise', nq-k+i+ib-1, ib,
320 $ a( i, 1 ), lda, tau( i ), work( iwt ), ldt )
321 IF( left ) THEN
322*
323* H or H**T is applied to C(1:m-k+i+ib-1,1:n)
324*
325 mi = m - k + i + ib - 1
326 ELSE
327*
328* H or H**T is applied to C(1:m,1:n-k+i+ib-1)
329*
330 ni = n - k + i + ib - 1
331 END IF
332*
333* Apply H or H**T
334*
335 CALL slarfb( side, transt, 'Backward', 'Rowwise', mi, ni,
336 $ ib, a( i, 1 ), lda, work( iwt ), ldt, c, ldc,
337 $ work, ldwork )
338 10 CONTINUE
339 END IF
340 work( 1 ) = lwkopt
341 RETURN
342*
343* End of SORMRQ
344*
345 END
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
subroutine slarfb(SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, T, LDT, C, LDC, WORK, LDWORK)
SLARFB applies a block reflector or its transpose to a general rectangular matrix.
Definition: slarfb.f:197
subroutine slarft(DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT)
SLARFT forms the triangular factor T of a block reflector H = I - vtvH
Definition: slarft.f:163
subroutine sormr2(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, INFO)
SORMR2 multiplies a general matrix by the orthogonal matrix from a RQ factorization determined by sge...
Definition: sormr2.f:159
subroutine sormrq(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO)
SORMRQ
Definition: sormrq.f:168