LAPACK  3.10.0
LAPACK: Linear Algebra PACKage
ctpsv.f
Go to the documentation of this file.
1 *> \brief \b CTPSV
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE CTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
12 *
13 * .. Scalar Arguments ..
14 * INTEGER INCX,N
15 * CHARACTER DIAG,TRANS,UPLO
16 * ..
17 * .. Array Arguments ..
18 * COMPLEX AP(*),X(*)
19 * ..
20 *
21 *
22 *> \par Purpose:
23 * =============
24 *>
25 *> \verbatim
26 *>
27 *> CTPSV solves one of the systems of equations
28 *>
29 *> A*x = b, or A**T*x = b, or A**H*x = b,
30 *>
31 *> where b and x are n element vectors and A is an n by n unit, or
32 *> non-unit, upper or lower triangular matrix, supplied in packed form.
33 *>
34 *> No test for singularity or near-singularity is included in this
35 *> routine. Such tests must be performed before calling this routine.
36 *> \endverbatim
37 *
38 * Arguments:
39 * ==========
40 *
41 *> \param[in] UPLO
42 *> \verbatim
43 *> UPLO is CHARACTER*1
44 *> On entry, UPLO specifies whether the matrix is an upper or
45 *> lower triangular matrix as follows:
46 *>
47 *> UPLO = 'U' or 'u' A is an upper triangular matrix.
48 *>
49 *> UPLO = 'L' or 'l' A is a lower triangular matrix.
50 *> \endverbatim
51 *>
52 *> \param[in] TRANS
53 *> \verbatim
54 *> TRANS is CHARACTER*1
55 *> On entry, TRANS specifies the equations to be solved as
56 *> follows:
57 *>
58 *> TRANS = 'N' or 'n' A*x = b.
59 *>
60 *> TRANS = 'T' or 't' A**T*x = b.
61 *>
62 *> TRANS = 'C' or 'c' A**H*x = b.
63 *> \endverbatim
64 *>
65 *> \param[in] DIAG
66 *> \verbatim
67 *> DIAG is CHARACTER*1
68 *> On entry, DIAG specifies whether or not A is unit
69 *> triangular as follows:
70 *>
71 *> DIAG = 'U' or 'u' A is assumed to be unit triangular.
72 *>
73 *> DIAG = 'N' or 'n' A is not assumed to be unit
74 *> triangular.
75 *> \endverbatim
76 *>
77 *> \param[in] N
78 *> \verbatim
79 *> N is INTEGER
80 *> On entry, N specifies the order of the matrix A.
81 *> N must be at least zero.
82 *> \endverbatim
83 *>
84 *> \param[in] AP
85 *> \verbatim
86 *> AP is COMPLEX array, dimension at least
87 *> ( ( n*( n + 1 ) )/2 ).
88 *> Before entry with UPLO = 'U' or 'u', the array AP must
89 *> contain the upper triangular matrix packed sequentially,
90 *> column by column, so that AP( 1 ) contains a( 1, 1 ),
91 *> AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
92 *> respectively, and so on.
93 *> Before entry with UPLO = 'L' or 'l', the array AP must
94 *> contain the lower triangular matrix packed sequentially,
95 *> column by column, so that AP( 1 ) contains a( 1, 1 ),
96 *> AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
97 *> respectively, and so on.
98 *> Note that when DIAG = 'U' or 'u', the diagonal elements of
99 *> A are not referenced, but are assumed to be unity.
100 *> \endverbatim
101 *>
102 *> \param[in,out] X
103 *> \verbatim
104 *> X is COMPLEX array, dimension at least
105 *> ( 1 + ( n - 1 )*abs( INCX ) ).
106 *> Before entry, the incremented array X must contain the n
107 *> element right-hand side vector b. On exit, X is overwritten
108 *> with the solution vector x.
109 *> \endverbatim
110 *>
111 *> \param[in] INCX
112 *> \verbatim
113 *> INCX is INTEGER
114 *> On entry, INCX specifies the increment for the elements of
115 *> X. INCX must not be zero.
116 *> \endverbatim
117 *
118 * Authors:
119 * ========
120 *
121 *> \author Univ. of Tennessee
122 *> \author Univ. of California Berkeley
123 *> \author Univ. of Colorado Denver
124 *> \author NAG Ltd.
125 *
126 *> \ingroup complex_blas_level2
127 *
128 *> \par Further Details:
129 * =====================
130 *>
131 *> \verbatim
132 *>
133 *> Level 2 Blas routine.
134 *>
135 *> -- Written on 22-October-1986.
136 *> Jack Dongarra, Argonne National Lab.
137 *> Jeremy Du Croz, Nag Central Office.
138 *> Sven Hammarling, Nag Central Office.
139 *> Richard Hanson, Sandia National Labs.
140 *> \endverbatim
141 *>
142 * =====================================================================
143  SUBROUTINE ctpsv(UPLO,TRANS,DIAG,N,AP,X,INCX)
144 *
145 * -- Reference BLAS level2 routine --
146 * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
147 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
148 *
149 * .. Scalar Arguments ..
150  INTEGER INCX,N
151  CHARACTER DIAG,TRANS,UPLO
152 * ..
153 * .. Array Arguments ..
154  COMPLEX AP(*),X(*)
155 * ..
156 *
157 * =====================================================================
158 *
159 * .. Parameters ..
160  COMPLEX ZERO
161  parameter(zero= (0.0e+0,0.0e+0))
162 * ..
163 * .. Local Scalars ..
164  COMPLEX TEMP
165  INTEGER I,INFO,IX,J,JX,K,KK,KX
166  LOGICAL NOCONJ,NOUNIT
167 * ..
168 * .. External Functions ..
169  LOGICAL LSAME
170  EXTERNAL lsame
171 * ..
172 * .. External Subroutines ..
173  EXTERNAL xerbla
174 * ..
175 * .. Intrinsic Functions ..
176  INTRINSIC conjg
177 * ..
178 *
179 * Test the input parameters.
180 *
181  info = 0
182  IF (.NOT.lsame(uplo,'U') .AND. .NOT.lsame(uplo,'L')) THEN
183  info = 1
184  ELSE IF (.NOT.lsame(trans,'N') .AND. .NOT.lsame(trans,'T') .AND.
185  + .NOT.lsame(trans,'C')) THEN
186  info = 2
187  ELSE IF (.NOT.lsame(diag,'U') .AND. .NOT.lsame(diag,'N')) THEN
188  info = 3
189  ELSE IF (n.LT.0) THEN
190  info = 4
191  ELSE IF (incx.EQ.0) THEN
192  info = 7
193  END IF
194  IF (info.NE.0) THEN
195  CALL xerbla('CTPSV ',info)
196  RETURN
197  END IF
198 *
199 * Quick return if possible.
200 *
201  IF (n.EQ.0) RETURN
202 *
203  noconj = lsame(trans,'T')
204  nounit = lsame(diag,'N')
205 *
206 * Set up the start point in X if the increment is not unity. This
207 * will be ( N - 1 )*INCX too small for descending loops.
208 *
209  IF (incx.LE.0) THEN
210  kx = 1 - (n-1)*incx
211  ELSE IF (incx.NE.1) THEN
212  kx = 1
213  END IF
214 *
215 * Start the operations. In this version the elements of AP are
216 * accessed sequentially with one pass through AP.
217 *
218  IF (lsame(trans,'N')) THEN
219 *
220 * Form x := inv( A )*x.
221 *
222  IF (lsame(uplo,'U')) THEN
223  kk = (n* (n+1))/2
224  IF (incx.EQ.1) THEN
225  DO 20 j = n,1,-1
226  IF (x(j).NE.zero) THEN
227  IF (nounit) x(j) = x(j)/ap(kk)
228  temp = x(j)
229  k = kk - 1
230  DO 10 i = j - 1,1,-1
231  x(i) = x(i) - temp*ap(k)
232  k = k - 1
233  10 CONTINUE
234  END IF
235  kk = kk - j
236  20 CONTINUE
237  ELSE
238  jx = kx + (n-1)*incx
239  DO 40 j = n,1,-1
240  IF (x(jx).NE.zero) THEN
241  IF (nounit) x(jx) = x(jx)/ap(kk)
242  temp = x(jx)
243  ix = jx
244  DO 30 k = kk - 1,kk - j + 1,-1
245  ix = ix - incx
246  x(ix) = x(ix) - temp*ap(k)
247  30 CONTINUE
248  END IF
249  jx = jx - incx
250  kk = kk - j
251  40 CONTINUE
252  END IF
253  ELSE
254  kk = 1
255  IF (incx.EQ.1) THEN
256  DO 60 j = 1,n
257  IF (x(j).NE.zero) THEN
258  IF (nounit) x(j) = x(j)/ap(kk)
259  temp = x(j)
260  k = kk + 1
261  DO 50 i = j + 1,n
262  x(i) = x(i) - temp*ap(k)
263  k = k + 1
264  50 CONTINUE
265  END IF
266  kk = kk + (n-j+1)
267  60 CONTINUE
268  ELSE
269  jx = kx
270  DO 80 j = 1,n
271  IF (x(jx).NE.zero) THEN
272  IF (nounit) x(jx) = x(jx)/ap(kk)
273  temp = x(jx)
274  ix = jx
275  DO 70 k = kk + 1,kk + n - j
276  ix = ix + incx
277  x(ix) = x(ix) - temp*ap(k)
278  70 CONTINUE
279  END IF
280  jx = jx + incx
281  kk = kk + (n-j+1)
282  80 CONTINUE
283  END IF
284  END IF
285  ELSE
286 *
287 * Form x := inv( A**T )*x or x := inv( A**H )*x.
288 *
289  IF (lsame(uplo,'U')) THEN
290  kk = 1
291  IF (incx.EQ.1) THEN
292  DO 110 j = 1,n
293  temp = x(j)
294  k = kk
295  IF (noconj) THEN
296  DO 90 i = 1,j - 1
297  temp = temp - ap(k)*x(i)
298  k = k + 1
299  90 CONTINUE
300  IF (nounit) temp = temp/ap(kk+j-1)
301  ELSE
302  DO 100 i = 1,j - 1
303  temp = temp - conjg(ap(k))*x(i)
304  k = k + 1
305  100 CONTINUE
306  IF (nounit) temp = temp/conjg(ap(kk+j-1))
307  END IF
308  x(j) = temp
309  kk = kk + j
310  110 CONTINUE
311  ELSE
312  jx = kx
313  DO 140 j = 1,n
314  temp = x(jx)
315  ix = kx
316  IF (noconj) THEN
317  DO 120 k = kk,kk + j - 2
318  temp = temp - ap(k)*x(ix)
319  ix = ix + incx
320  120 CONTINUE
321  IF (nounit) temp = temp/ap(kk+j-1)
322  ELSE
323  DO 130 k = kk,kk + j - 2
324  temp = temp - conjg(ap(k))*x(ix)
325  ix = ix + incx
326  130 CONTINUE
327  IF (nounit) temp = temp/conjg(ap(kk+j-1))
328  END IF
329  x(jx) = temp
330  jx = jx + incx
331  kk = kk + j
332  140 CONTINUE
333  END IF
334  ELSE
335  kk = (n* (n+1))/2
336  IF (incx.EQ.1) THEN
337  DO 170 j = n,1,-1
338  temp = x(j)
339  k = kk
340  IF (noconj) THEN
341  DO 150 i = n,j + 1,-1
342  temp = temp - ap(k)*x(i)
343  k = k - 1
344  150 CONTINUE
345  IF (nounit) temp = temp/ap(kk-n+j)
346  ELSE
347  DO 160 i = n,j + 1,-1
348  temp = temp - conjg(ap(k))*x(i)
349  k = k - 1
350  160 CONTINUE
351  IF (nounit) temp = temp/conjg(ap(kk-n+j))
352  END IF
353  x(j) = temp
354  kk = kk - (n-j+1)
355  170 CONTINUE
356  ELSE
357  kx = kx + (n-1)*incx
358  jx = kx
359  DO 200 j = n,1,-1
360  temp = x(jx)
361  ix = kx
362  IF (noconj) THEN
363  DO 180 k = kk,kk - (n- (j+1)),-1
364  temp = temp - ap(k)*x(ix)
365  ix = ix - incx
366  180 CONTINUE
367  IF (nounit) temp = temp/ap(kk-n+j)
368  ELSE
369  DO 190 k = kk,kk - (n- (j+1)),-1
370  temp = temp - conjg(ap(k))*x(ix)
371  ix = ix - incx
372  190 CONTINUE
373  IF (nounit) temp = temp/conjg(ap(kk-n+j))
374  END IF
375  x(jx) = temp
376  jx = jx - incx
377  kk = kk - (n-j+1)
378  200 CONTINUE
379  END IF
380  END IF
381  END IF
382 *
383  RETURN
384 *
385 * End of CTPSV
386 *
387  END
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
subroutine ctpsv(UPLO, TRANS, DIAG, N, AP, X, INCX)
CTPSV
Definition: ctpsv.f:144