LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dchksy()

subroutine dchksy ( logical, dimension( * ) dotype,
integer nn,
integer, dimension( * ) nval,
integer nnb,
integer, dimension( * ) nbval,
integer nns,
integer, dimension( * ) nsval,
double precision thresh,
logical tsterr,
integer nmax,
double precision, dimension( * ) a,
double precision, dimension( * ) afac,
double precision, dimension( * ) ainv,
double precision, dimension( * ) b,
double precision, dimension( * ) x,
double precision, dimension( * ) xact,
double precision, dimension( * ) work,
double precision, dimension( * ) rwork,
integer, dimension( * ) iwork,
integer nout )

DCHKSY

Purpose:
!>
!> DCHKSY tests DSYTRF, -TRI2, -TRS, -TRS2, -RFS, and -CON.
!> 
Parameters
[in]DOTYPE
!>          DOTYPE is LOGICAL array, dimension (NTYPES)
!>          The matrix types to be used for testing.  Matrices of type j
!>          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
!>          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
!> 
[in]NN
!>          NN is INTEGER
!>          The number of values of N contained in the vector NVAL.
!> 
[in]NVAL
!>          NVAL is INTEGER array, dimension (NN)
!>          The values of the matrix dimension N.
!> 
[in]NNB
!>          NNB is INTEGER
!>          The number of values of NB contained in the vector NBVAL.
!> 
[in]NBVAL
!>          NBVAL is INTEGER array, dimension (NNB)
!>          The values of the blocksize NB.
!> 
[in]NNS
!>          NNS is INTEGER
!>          The number of values of NRHS contained in the vector NSVAL.
!> 
[in]NSVAL
!>          NSVAL is INTEGER array, dimension (NNS)
!>          The values of the number of right hand sides NRHS.
!> 
[in]THRESH
!>          THRESH is DOUBLE PRECISION
!>          The threshold value for the test ratios.  A result is
!>          included in the output file if RESULT >= THRESH.  To have
!>          every test ratio printed, use THRESH = 0.
!> 
[in]TSTERR
!>          TSTERR is LOGICAL
!>          Flag that indicates whether error exits are to be tested.
!> 
[in]NMAX
!>          NMAX is INTEGER
!>          The maximum value permitted for N, used in dimensioning the
!>          work arrays.
!> 
[out]A
!>          A is DOUBLE PRECISION array, dimension (NMAX*NMAX)
!> 
[out]AFAC
!>          AFAC is DOUBLE PRECISION array, dimension (NMAX*NMAX)
!> 
[out]AINV
!>          AINV is DOUBLE PRECISION array, dimension (NMAX*NMAX)
!> 
[out]B
!>          B is DOUBLE PRECISION array, dimension (NMAX*NSMAX)
!>          where NSMAX is the largest entry in NSVAL.
!> 
[out]X
!>          X is DOUBLE PRECISION array, dimension (NMAX*NSMAX)
!> 
[out]XACT
!>          XACT is DOUBLE PRECISION array, dimension (NMAX*NSMAX)
!> 
[out]WORK
!>          WORK is DOUBLE PRECISION array, dimension (NMAX*max(3,NSMAX))
!> 
[out]RWORK
!>          RWORK is DOUBLE PRECISION array, dimension (max(NMAX,2*NSMAX))
!> 
[out]IWORK
!>          IWORK is INTEGER array, dimension (2*NMAX)
!> 
[in]NOUT
!>          NOUT is INTEGER
!>          The unit number for output.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 167 of file dchksy.f.

170*
171* -- LAPACK test routine --
172* -- LAPACK is a software package provided by Univ. of Tennessee, --
173* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
174*
175* .. Scalar Arguments ..
176 LOGICAL TSTERR
177 INTEGER NMAX, NN, NNB, NNS, NOUT
178 DOUBLE PRECISION THRESH
179* ..
180* .. Array Arguments ..
181 LOGICAL DOTYPE( * )
182 INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
183 DOUBLE PRECISION A( * ), AFAC( * ), AINV( * ), B( * ),
184 $ RWORK( * ), WORK( * ), X( * ), XACT( * )
185* ..
186*
187* =====================================================================
188*
189* .. Parameters ..
190 DOUBLE PRECISION ZERO
191 parameter( zero = 0.0d+0 )
192 INTEGER NTYPES
193 parameter( ntypes = 10 )
194 INTEGER NTESTS
195 parameter( ntests = 9 )
196* ..
197* .. Local Scalars ..
198 LOGICAL TRFCON, ZEROT
199 CHARACTER DIST, TYPE, UPLO, XTYPE
200 CHARACTER*3 PATH
201 INTEGER I, I1, I2, IMAT, IN, INB, INFO, IOFF, IRHS,
202 $ IUPLO, IZERO, J, K, KL, KU, LDA, LWORK, MODE,
203 $ N, NB, NERRS, NFAIL, NIMAT, NRHS, NRUN, NT
204 DOUBLE PRECISION ANORM, CNDNUM, RCOND, RCONDC
205* ..
206* .. Local Arrays ..
207 CHARACTER UPLOS( 2 )
208 INTEGER ISEED( 4 ), ISEEDY( 4 )
209 DOUBLE PRECISION RESULT( NTESTS )
210* ..
211* .. External Functions ..
212 DOUBLE PRECISION DGET06, DLANSY
213 EXTERNAL dget06, dlansy
214* ..
215* .. External Subroutines ..
216 EXTERNAL alaerh, alahd, alasum, derrsy, dget04, dlacpy,
220* ..
221* .. Intrinsic Functions ..
222 INTRINSIC max, min
223* ..
224* .. Scalars in Common ..
225 LOGICAL LERR, OK
226 CHARACTER*32 SRNAMT
227 INTEGER INFOT, NUNIT
228* ..
229* .. Common blocks ..
230 COMMON / infoc / infot, nunit, ok, lerr
231 COMMON / srnamc / srnamt
232* ..
233* .. Data statements ..
234 DATA iseedy / 1988, 1989, 1990, 1991 /
235 DATA uplos / 'U', 'L' /
236* ..
237* .. Executable Statements ..
238*
239* Initialize constants and the random number seed.
240*
241 path( 1: 1 ) = 'Double precision'
242 path( 2: 3 ) = 'SY'
243 nrun = 0
244 nfail = 0
245 nerrs = 0
246 DO 10 i = 1, 4
247 iseed( i ) = iseedy( i )
248 10 CONTINUE
249*
250* Test the error exits
251*
252 IF( tsterr )
253 $ CALL derrsy( path, nout )
254 infot = 0
255*
256* Set the minimum block size for which the block routine should
257* be used, which will be later returned by ILAENV
258*
259 CALL xlaenv( 2, 2 )
260*
261* Do for each value of N in NVAL
262*
263 DO 180 in = 1, nn
264 n = nval( in )
265 lda = max( n, 1 )
266 xtype = 'N'
267 nimat = ntypes
268 IF( n.LE.0 )
269 $ nimat = 1
270*
271 izero = 0
272*
273* Do for each value of matrix type IMAT
274*
275 DO 170 imat = 1, nimat
276*
277* Do the tests only if DOTYPE( IMAT ) is true.
278*
279 IF( .NOT.dotype( imat ) )
280 $ GO TO 170
281*
282* Skip types 3, 4, 5, or 6 if the matrix size is too small.
283*
284 zerot = imat.GE.3 .AND. imat.LE.6
285 IF( zerot .AND. n.LT.imat-2 )
286 $ GO TO 170
287*
288* Do first for UPLO = 'U', then for UPLO = 'L'
289*
290 DO 160 iuplo = 1, 2
291 uplo = uplos( iuplo )
292*
293* Begin generate the test matrix A.
294*
295*
296* Set up parameters with DLATB4 for the matrix generator
297* based on the type of matrix to be generated.
298*
299 CALL dlatb4( path, imat, n, n, TYPE, KL, KU, ANORM, MODE,
300 $ CNDNUM, DIST )
301*
302* Generate a matrix with DLATMS.
303*
304 srnamt = 'DLATMS'
305 CALL dlatms( n, n, dist, iseed, TYPE, RWORK, MODE,
306 $ CNDNUM, ANORM, KL, KU, UPLO, A, LDA, WORK,
307 $ INFO )
308*
309* Check error code from DLATMS and handle error.
310*
311 IF( info.NE.0 ) THEN
312 CALL alaerh( path, 'DLATMS', info, 0, uplo, n, n, -1,
313 $ -1, -1, imat, nfail, nerrs, nout )
314*
315* Skip all tests for this generated matrix
316*
317 GO TO 160
318 END IF
319*
320* For matrix types 3-6, zero one or more rows and
321* columns of the matrix to test that INFO is returned
322* correctly.
323*
324 IF( zerot ) THEN
325 IF( imat.EQ.3 ) THEN
326 izero = 1
327 ELSE IF( imat.EQ.4 ) THEN
328 izero = n
329 ELSE
330 izero = n / 2 + 1
331 END IF
332*
333 IF( imat.LT.6 ) THEN
334*
335* Set row and column IZERO to zero.
336*
337 IF( iuplo.EQ.1 ) THEN
338 ioff = ( izero-1 )*lda
339 DO 20 i = 1, izero - 1
340 a( ioff+i ) = zero
341 20 CONTINUE
342 ioff = ioff + izero
343 DO 30 i = izero, n
344 a( ioff ) = zero
345 ioff = ioff + lda
346 30 CONTINUE
347 ELSE
348 ioff = izero
349 DO 40 i = 1, izero - 1
350 a( ioff ) = zero
351 ioff = ioff + lda
352 40 CONTINUE
353 ioff = ioff - izero
354 DO 50 i = izero, n
355 a( ioff+i ) = zero
356 50 CONTINUE
357 END IF
358 ELSE
359 IF( iuplo.EQ.1 ) THEN
360*
361* Set the first IZERO rows and columns to zero.
362*
363 ioff = 0
364 DO 70 j = 1, n
365 i2 = min( j, izero )
366 DO 60 i = 1, i2
367 a( ioff+i ) = zero
368 60 CONTINUE
369 ioff = ioff + lda
370 70 CONTINUE
371 ELSE
372*
373* Set the last IZERO rows and columns to zero.
374*
375 ioff = 0
376 DO 90 j = 1, n
377 i1 = max( j, izero )
378 DO 80 i = i1, n
379 a( ioff+i ) = zero
380 80 CONTINUE
381 ioff = ioff + lda
382 90 CONTINUE
383 END IF
384 END IF
385 ELSE
386 izero = 0
387 END IF
388*
389* End generate the test matrix A.
390*
391* Do for each value of NB in NBVAL
392*
393 DO 150 inb = 1, nnb
394*
395* Set the optimal blocksize, which will be later
396* returned by ILAENV.
397*
398 nb = nbval( inb )
399 CALL xlaenv( 1, nb )
400*
401* Copy the test matrix A into matrix AFAC which
402* will be factorized in place. This is needed to
403* preserve the test matrix A for subsequent tests.
404*
405 CALL dlacpy( uplo, n, n, a, lda, afac, lda )
406*
407* Compute the L*D*L**T or U*D*U**T factorization of the
408* matrix. IWORK stores details of the interchanges and
409* the block structure of D. AINV is a work array for
410* block factorization, LWORK is the length of AINV.
411*
412 lwork = max( 2, nb )*lda
413 srnamt = 'DSYTRF'
414 CALL dsytrf( uplo, n, afac, lda, iwork, ainv, lwork,
415 $ info )
416*
417* Adjust the expected value of INFO to account for
418* pivoting.
419*
420 k = izero
421 IF( k.GT.0 ) THEN
422 100 CONTINUE
423 IF( iwork( k ).LT.0 ) THEN
424 IF( iwork( k ).NE.-k ) THEN
425 k = -iwork( k )
426 GO TO 100
427 END IF
428 ELSE IF( iwork( k ).NE.k ) THEN
429 k = iwork( k )
430 GO TO 100
431 END IF
432 END IF
433*
434* Check error code from DSYTRF and handle error.
435*
436 IF( info.NE.k )
437 $ CALL alaerh( path, 'DSYTRF', info, k, uplo, n, n,
438 $ -1, -1, nb, imat, nfail, nerrs, nout )
439*
440* Set the condition estimate flag if the INFO is not 0.
441*
442 IF( info.NE.0 ) THEN
443 trfcon = .true.
444 ELSE
445 trfcon = .false.
446 END IF
447*
448*+ TEST 1
449* Reconstruct matrix from factors and compute residual.
450*
451 CALL dsyt01( uplo, n, a, lda, afac, lda, iwork, ainv,
452 $ lda, rwork, result( 1 ) )
453 nt = 1
454*
455*+ TEST 2
456* Form the inverse and compute the residual,
457* if the factorization was competed without INFO > 0
458* (i.e. there is no zero rows and columns).
459* Do it only for the first block size.
460*
461 IF( inb.EQ.1 .AND. .NOT.trfcon ) THEN
462 CALL dlacpy( uplo, n, n, afac, lda, ainv, lda )
463 srnamt = 'DSYTRI2'
464 lwork = (n+nb+1)*(nb+3)
465 CALL dsytri2( uplo, n, ainv, lda, iwork, work,
466 $ lwork, info )
467*
468* Check error code from DSYTRI2 and handle error.
469*
470 IF( info.NE.0 )
471 $ CALL alaerh( path, 'DSYTRI2', info, -1, uplo, n,
472 $ n, -1, -1, -1, imat, nfail, nerrs,
473 $ nout )
474*
475* Compute the residual for a symmetric matrix times
476* its inverse.
477*
478 CALL dpot03( uplo, n, a, lda, ainv, lda, work, lda,
479 $ rwork, rcondc, result( 2 ) )
480 nt = 2
481 END IF
482*
483* Print information about the tests that did not pass
484* the threshold.
485*
486 DO 110 k = 1, nt
487 IF( result( k ).GE.thresh ) THEN
488 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
489 $ CALL alahd( nout, path )
490 WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
491 $ result( k )
492 nfail = nfail + 1
493 END IF
494 110 CONTINUE
495 nrun = nrun + nt
496*
497* Skip the other tests if this is not the first block
498* size.
499*
500 IF( inb.GT.1 )
501 $ GO TO 150
502*
503* Do only the condition estimate if INFO is not 0.
504*
505 IF( trfcon ) THEN
506 rcondc = zero
507 GO TO 140
508 END IF
509*
510* Do for each value of NRHS in NSVAL.
511*
512 DO 130 irhs = 1, nns
513 nrhs = nsval( irhs )
514*
515*+ TEST 3 ( Using TRS)
516* Solve and compute residual for A * X = B.
517*
518* Choose a set of NRHS random solution vectors
519* stored in XACT and set up the right hand side B
520*
521 srnamt = 'DLARHS'
522 CALL dlarhs( path, xtype, uplo, ' ', n, n, kl, ku,
523 $ nrhs, a, lda, xact, lda, b, lda,
524 $ iseed, info )
525 CALL dlacpy( 'Full', n, nrhs, b, lda, x, lda )
526*
527 srnamt = 'DSYTRS'
528 CALL dsytrs( uplo, n, nrhs, afac, lda, iwork, x,
529 $ lda, info )
530*
531* Check error code from DSYTRS and handle error.
532*
533 IF( info.NE.0 )
534 $ CALL alaerh( path, 'DSYTRS', info, 0, uplo, n,
535 $ n, -1, -1, nrhs, imat, nfail,
536 $ nerrs, nout )
537*
538 CALL dlacpy( 'Full', n, nrhs, b, lda, work, lda )
539*
540* Compute the residual for the solution
541*
542 CALL dpot02( uplo, n, nrhs, a, lda, x, lda, work,
543 $ lda, rwork, result( 3 ) )
544*
545*+ TEST 4 (Using TRS2)
546*
547* Solve and compute residual for A * X = B.
548*
549* Choose a set of NRHS random solution vectors
550* stored in XACT and set up the right hand side B
551*
552 srnamt = 'DLARHS'
553 CALL dlarhs( path, xtype, uplo, ' ', n, n, kl, ku,
554 $ nrhs, a, lda, xact, lda, b, lda,
555 $ iseed, info )
556 CALL dlacpy( 'Full', n, nrhs, b, lda, x, lda )
557*
558 srnamt = 'DSYTRS2'
559 CALL dsytrs2( uplo, n, nrhs, afac, lda, iwork, x,
560 $ lda, work, info )
561*
562* Check error code from DSYTRS2 and handle error.
563*
564 IF( info.NE.0 )
565 $ CALL alaerh( path, 'DSYTRS2', info, 0, uplo, n,
566 $ n, -1, -1, nrhs, imat, nfail,
567 $ nerrs, nout )
568*
569 CALL dlacpy( 'Full', n, nrhs, b, lda, work, lda )
570*
571* Compute the residual for the solution
572*
573 CALL dpot02( uplo, n, nrhs, a, lda, x, lda, work,
574 $ lda, rwork, result( 4 ) )
575*
576*+ TEST 5
577* Check solution from generated exact solution.
578*
579 CALL dget04( n, nrhs, x, lda, xact, lda, rcondc,
580 $ result( 5 ) )
581*
582*+ TESTS 6, 7, and 8
583* Use iterative refinement to improve the solution.
584*
585 srnamt = 'DSYRFS'
586 CALL dsyrfs( uplo, n, nrhs, a, lda, afac, lda,
587 $ iwork, b, lda, x, lda, rwork,
588 $ rwork( nrhs+1 ), work, iwork( n+1 ),
589 $ info )
590*
591* Check error code from DSYRFS and handle error.
592*
593 IF( info.NE.0 )
594 $ CALL alaerh( path, 'DSYRFS', info, 0, uplo, n,
595 $ n, -1, -1, nrhs, imat, nfail,
596 $ nerrs, nout )
597*
598 CALL dget04( n, nrhs, x, lda, xact, lda, rcondc,
599 $ result( 6 ) )
600 CALL dpot05( uplo, n, nrhs, a, lda, b, lda, x, lda,
601 $ xact, lda, rwork, rwork( nrhs+1 ),
602 $ result( 7 ) )
603*
604* Print information about the tests that did not pass
605* the threshold.
606*
607 DO 120 k = 3, 8
608 IF( result( k ).GE.thresh ) THEN
609 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
610 $ CALL alahd( nout, path )
611 WRITE( nout, fmt = 9998 )uplo, n, nrhs,
612 $ imat, k, result( k )
613 nfail = nfail + 1
614 END IF
615 120 CONTINUE
616 nrun = nrun + 6
617*
618* End do for each value of NRHS in NSVAL.
619*
620 130 CONTINUE
621*
622*+ TEST 9
623* Get an estimate of RCOND = 1/CNDNUM.
624*
625 140 CONTINUE
626 anorm = dlansy( '1', uplo, n, a, lda, rwork )
627 srnamt = 'DSYCON'
628 CALL dsycon( uplo, n, afac, lda, iwork, anorm, rcond,
629 $ work, iwork( n+1 ), info )
630*
631* Check error code from DSYCON and handle error.
632*
633 IF( info.NE.0 )
634 $ CALL alaerh( path, 'DSYCON', info, 0, uplo, n, n,
635 $ -1, -1, -1, imat, nfail, nerrs, nout )
636*
637* Compute the test ratio to compare values of RCOND
638*
639 result( 9 ) = dget06( rcond, rcondc )
640*
641* Print information about the tests that did not pass
642* the threshold.
643*
644 IF( result( 9 ).GE.thresh ) THEN
645 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
646 $ CALL alahd( nout, path )
647 WRITE( nout, fmt = 9997 )uplo, n, imat, 9,
648 $ result( 9 )
649 nfail = nfail + 1
650 END IF
651 nrun = nrun + 1
652 150 CONTINUE
653*
654 160 CONTINUE
655 170 CONTINUE
656 180 CONTINUE
657*
658* Print a summary of the results.
659*
660 CALL alasum( path, nout, nfail, nrun, nerrs )
661*
662 9999 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NB =', i4, ', type ',
663 $ i2, ', test ', i2, ', ratio =', g12.5 )
664 9998 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NRHS=', i3, ', type ',
665 $ i2, ', test(', i2, ') =', g12.5 )
666 9997 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ',', 10x, ' type ', i2,
667 $ ', test(', i2, ') =', g12.5 )
668 RETURN
669*
670* End of DCHKSY
671*
subroutine alasum(type, nout, nfail, nrun, nerrs)
ALASUM
Definition alasum.f:73
subroutine dlarhs(path, xtype, uplo, trans, m, n, kl, ku, nrhs, a, lda, x, ldx, b, ldb, iseed, info)
DLARHS
Definition dlarhs.f:205
subroutine xlaenv(ispec, nvalue)
XLAENV
Definition xlaenv.f:81
subroutine alaerh(path, subnam, info, infoe, opts, m, n, kl, ku, n5, imat, nfail, nerrs, nout)
ALAERH
Definition alaerh.f:147
subroutine alahd(iounit, path)
ALAHD
Definition alahd.f:107
subroutine derrsy(path, nunit)
DERRSY
Definition derrsy.f:55
subroutine dget04(n, nrhs, x, ldx, xact, ldxact, rcond, resid)
DGET04
Definition dget04.f:102
double precision function dget06(rcond, rcondc)
DGET06
Definition dget06.f:55
subroutine dlatb4(path, imat, m, n, type, kl, ku, anorm, mode, cndnum, dist)
DLATB4
Definition dlatb4.f:120
subroutine dlatms(m, n, dist, iseed, sym, d, mode, cond, dmax, kl, ku, pack, a, lda, work, info)
DLATMS
Definition dlatms.f:321
subroutine dpot02(uplo, n, nrhs, a, lda, x, ldx, b, ldb, rwork, resid)
DPOT02
Definition dpot02.f:127
subroutine dpot03(uplo, n, a, lda, ainv, ldainv, work, ldwork, rwork, rcond, resid)
DPOT03
Definition dpot03.f:125
subroutine dpot05(uplo, n, nrhs, a, lda, b, ldb, x, ldx, xact, ldxact, ferr, berr, reslts)
DPOT05
Definition dpot05.f:164
subroutine dsyt01(uplo, n, a, lda, afac, ldafac, ipiv, c, ldc, rwork, resid)
DSYT01
Definition dsyt01.f:124
subroutine dsycon(uplo, n, a, lda, ipiv, anorm, rcond, work, iwork, info)
DSYCON
Definition dsycon.f:128
subroutine dsyrfs(uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work, iwork, info)
DSYRFS
Definition dsyrfs.f:190
subroutine dsytrf(uplo, n, a, lda, ipiv, work, lwork, info)
DSYTRF
Definition dsytrf.f:180
subroutine dsytri2(uplo, n, a, lda, ipiv, work, lwork, info)
DSYTRI2
Definition dsytri2.f:125
subroutine dsytrs2(uplo, n, nrhs, a, lda, ipiv, b, ldb, work, info)
DSYTRS2
Definition dsytrs2.f:130
subroutine dsytrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
DSYTRS
Definition dsytrs.f:118
subroutine dlacpy(uplo, m, n, a, lda, b, ldb)
DLACPY copies all or part of one two-dimensional array to another.
Definition dlacpy.f:101
double precision function dlansy(norm, uplo, n, a, lda, work)
DLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition dlansy.f:120
Here is the call graph for this function:
Here is the caller graph for this function: