LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ chegvd()

subroutine chegvd ( integer itype,
character jobz,
character uplo,
integer n,
complex, dimension( lda, * ) a,
integer lda,
complex, dimension( ldb, * ) b,
integer ldb,
real, dimension( * ) w,
complex, dimension( * ) work,
integer lwork,
real, dimension( * ) rwork,
integer lrwork,
integer, dimension( * ) iwork,
integer liwork,
integer info )

CHEGVD

Download CHEGVD + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> CHEGVD computes all the eigenvalues, and optionally, the eigenvectors
!> of a complex generalized Hermitian-definite eigenproblem, of the form
!> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
!> B are assumed to be Hermitian and B is also positive definite.
!> If eigenvectors are desired, it uses a divide and conquer algorithm.
!>
!> 
Parameters
[in]ITYPE
!>          ITYPE is INTEGER
!>          Specifies the problem type to be solved:
!>          = 1:  A*x = (lambda)*B*x
!>          = 2:  A*B*x = (lambda)*x
!>          = 3:  B*A*x = (lambda)*x
!> 
[in]JOBZ
!>          JOBZ is CHARACTER*1
!>          = 'N':  Compute eigenvalues only;
!>          = 'V':  Compute eigenvalues and eigenvectors.
!> 
[in]UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangles of A and B are stored;
!>          = 'L':  Lower triangles of A and B are stored.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrices A and B.  N >= 0.
!> 
[in,out]A
!>          A is COMPLEX array, dimension (LDA, N)
!>          On entry, the Hermitian matrix A.  If UPLO = 'U', the
!>          leading N-by-N upper triangular part of A contains the
!>          upper triangular part of the matrix A.  If UPLO = 'L',
!>          the leading N-by-N lower triangular part of A contains
!>          the lower triangular part of the matrix A.
!>
!>          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
!>          matrix Z of eigenvectors.  The eigenvectors are normalized
!>          as follows:
!>          if ITYPE = 1 or 2, Z**H*B*Z = I;
!>          if ITYPE = 3, Z**H*inv(B)*Z = I.
!>          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
!>          or the lower triangle (if UPLO='L') of A, including the
!>          diagonal, is destroyed.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 
[in,out]B
!>          B is COMPLEX array, dimension (LDB, N)
!>          On entry, the Hermitian matrix B.  If UPLO = 'U', the
!>          leading N-by-N upper triangular part of B contains the
!>          upper triangular part of the matrix B.  If UPLO = 'L',
!>          the leading N-by-N lower triangular part of B contains
!>          the lower triangular part of the matrix B.
!>
!>          On exit, if INFO <= N, the part of B containing the matrix is
!>          overwritten by the triangular factor U or L from the Cholesky
!>          factorization B = U**H*U or B = L*L**H.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[out]W
!>          W is REAL array, dimension (N)
!>          If INFO = 0, the eigenvalues in ascending order.
!> 
[out]WORK
!>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The length of the array WORK.
!>          If N <= 1,                LWORK >= 1.
!>          If JOBZ  = 'N' and N > 1, LWORK >= N + 1.
!>          If JOBZ  = 'V' and N > 1, LWORK >= 2*N + N**2.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal sizes of the WORK, RWORK and
!>          IWORK arrays, returns these values as the first entries of
!>          the WORK, RWORK and IWORK arrays, and no error message
!>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
!> 
[out]RWORK
!>          RWORK is REAL array, dimension (MAX(1,LRWORK))
!>          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
!> 
[in]LRWORK
!>          LRWORK is INTEGER
!>          The dimension of the array RWORK.
!>          If N <= 1,                LRWORK >= 1.
!>          If JOBZ  = 'N' and N > 1, LRWORK >= N.
!>          If JOBZ  = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
!>
!>          If LRWORK = -1, then a workspace query is assumed; the
!>          routine only calculates the optimal sizes of the WORK, RWORK
!>          and IWORK arrays, returns these values as the first entries
!>          of the WORK, RWORK and IWORK arrays, and no error message
!>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
!> 
[out]IWORK
!>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
!>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
!> 
[in]LIWORK
!>          LIWORK is INTEGER
!>          The dimension of the array IWORK.
!>          If N <= 1,                LIWORK >= 1.
!>          If JOBZ  = 'N' and N > 1, LIWORK >= 1.
!>          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.
!>
!>          If LIWORK = -1, then a workspace query is assumed; the
!>          routine only calculates the optimal sizes of the WORK, RWORK
!>          and IWORK arrays, returns these values as the first entries
!>          of the WORK, RWORK and IWORK arrays, and no error message
!>          related to LWORK or LRWORK or LIWORK is issued by XERBLA.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  CPOTRF or CHEEVD returned an error code:
!>             <= N:  if INFO = i and JOBZ = 'N', then the algorithm
!>                    failed to converge; i off-diagonal elements of an
!>                    intermediate tridiagonal form did not converge to
!>                    zero;
!>                    if INFO = i and JOBZ = 'V', then the algorithm
!>                    failed to compute an eigenvalue while working on
!>                    the submatrix lying in rows and columns INFO/(N+1)
!>                    through mod(INFO,N+1);
!>             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
!>                    principal minor of order i of B is not positive.
!>                    The factorization of B could not be completed and
!>                    no eigenvalues or eigenvectors were computed.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  Modified so that no backsubstitution is performed if CHEEVD fails to
!>  converge (NEIG in old code could be greater than N causing out of
!>  bounds reference to A - reported by Ralf Meyer).  Also corrected the
!>  description of INFO and the test on ITYPE. Sven, 16 Feb 05.
!> 
Contributors:
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA

Definition at line 239 of file chegvd.f.

242*
243* -- LAPACK driver routine --
244* -- LAPACK is a software package provided by Univ. of Tennessee, --
245* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
246*
247* .. Scalar Arguments ..
248 CHARACTER JOBZ, UPLO
249 INTEGER INFO, ITYPE, LDA, LDB, LIWORK, LRWORK, LWORK, N
250* ..
251* .. Array Arguments ..
252 INTEGER IWORK( * )
253 REAL RWORK( * ), W( * )
254 COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
255* ..
256*
257* =====================================================================
258*
259* .. Parameters ..
260 COMPLEX CONE
261 parameter( cone = ( 1.0e+0, 0.0e+0 ) )
262* ..
263* .. Local Scalars ..
264 LOGICAL LQUERY, UPPER, WANTZ
265 CHARACTER TRANS
266 INTEGER LIOPT, LIWMIN, LOPT, LROPT, LRWMIN, LWMIN
267* ..
268* .. External Functions ..
269 LOGICAL LSAME
270 REAL SROUNDUP_LWORK
271 EXTERNAL lsame, sroundup_lwork
272* ..
273* .. External Subroutines ..
274 EXTERNAL cheevd, chegst, cpotrf, ctrmm, ctrsm,
275 $ xerbla
276* ..
277* .. Intrinsic Functions ..
278 INTRINSIC max, real
279* ..
280* .. Executable Statements ..
281*
282* Test the input parameters.
283*
284 wantz = lsame( jobz, 'V' )
285 upper = lsame( uplo, 'U' )
286 lquery = ( lwork.EQ.-1 .OR. lrwork.EQ.-1 .OR. liwork.EQ.-1 )
287*
288 info = 0
289 IF( n.LE.1 ) THEN
290 lwmin = 1
291 lrwmin = 1
292 liwmin = 1
293 ELSE IF( wantz ) THEN
294 lwmin = 2*n + n*n
295 lrwmin = 1 + 5*n + 2*n*n
296 liwmin = 3 + 5*n
297 ELSE
298 lwmin = n + 1
299 lrwmin = n
300 liwmin = 1
301 END IF
302 lopt = lwmin
303 lropt = lrwmin
304 liopt = liwmin
305 IF( itype.LT.1 .OR. itype.GT.3 ) THEN
306 info = -1
307 ELSE IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
308 info = -2
309 ELSE IF( .NOT.( upper .OR. lsame( uplo, 'L' ) ) ) THEN
310 info = -3
311 ELSE IF( n.LT.0 ) THEN
312 info = -4
313 ELSE IF( lda.LT.max( 1, n ) ) THEN
314 info = -6
315 ELSE IF( ldb.LT.max( 1, n ) ) THEN
316 info = -8
317 END IF
318*
319 IF( info.EQ.0 ) THEN
320 work( 1 ) = sroundup_lwork(lopt)
321 rwork( 1 ) = real( lropt )
322 iwork( 1 ) = liopt
323*
324 IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
325 info = -11
326 ELSE IF( lrwork.LT.lrwmin .AND. .NOT.lquery ) THEN
327 info = -13
328 ELSE IF( liwork.LT.liwmin .AND. .NOT.lquery ) THEN
329 info = -15
330 END IF
331 END IF
332*
333 IF( info.NE.0 ) THEN
334 CALL xerbla( 'CHEGVD', -info )
335 RETURN
336 ELSE IF( lquery ) THEN
337 RETURN
338 END IF
339*
340* Quick return if possible
341*
342 IF( n.EQ.0 )
343 $ RETURN
344*
345* Form a Cholesky factorization of B.
346*
347 CALL cpotrf( uplo, n, b, ldb, info )
348 IF( info.NE.0 ) THEN
349 info = n + info
350 RETURN
351 END IF
352*
353* Transform problem to standard eigenvalue problem and solve.
354*
355 CALL chegst( itype, uplo, n, a, lda, b, ldb, info )
356 CALL cheevd( jobz, uplo, n, a, lda, w, work, lwork, rwork,
357 $ lrwork,
358 $ iwork, liwork, info )
359 lopt = int( max( real( lopt ), real( work( 1 ) ) ) )
360 lropt = int( max( real( lropt ), real( rwork( 1 ) ) ) )
361 liopt = int( max( real( liopt ), real( iwork( 1 ) ) ) )
362*
363 IF( wantz .AND. info.EQ.0 ) THEN
364*
365* Backtransform eigenvectors to the original problem.
366*
367 IF( itype.EQ.1 .OR. itype.EQ.2 ) THEN
368*
369* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
370* backtransform eigenvectors: x = inv(L)**H *y or inv(U)*y
371*
372 IF( upper ) THEN
373 trans = 'N'
374 ELSE
375 trans = 'C'
376 END IF
377*
378 CALL ctrsm( 'Left', uplo, trans, 'Non-unit', n, n, cone,
379 $ b, ldb, a, lda )
380*
381 ELSE IF( itype.EQ.3 ) THEN
382*
383* For B*A*x=(lambda)*x;
384* backtransform eigenvectors: x = L*y or U**H *y
385*
386 IF( upper ) THEN
387 trans = 'C'
388 ELSE
389 trans = 'N'
390 END IF
391*
392 CALL ctrmm( 'Left', uplo, trans, 'Non-unit', n, n, cone,
393 $ b, ldb, a, lda )
394 END IF
395 END IF
396*
397 work( 1 ) = sroundup_lwork(lopt)
398 rwork( 1 ) = real( lropt )
399 iwork( 1 ) = liopt
400*
401 RETURN
402*
403* End of CHEGVD
404*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine cheevd(jobz, uplo, n, a, lda, w, work, lwork, rwork, lrwork, iwork, liwork, info)
CHEEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices
Definition cheevd.f:197
subroutine chegst(itype, uplo, n, a, lda, b, ldb, info)
CHEGST
Definition chegst.f:126
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine cpotrf(uplo, n, a, lda, info)
CPOTRF
Definition cpotrf.f:105
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
subroutine ctrmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
CTRMM
Definition ctrmm.f:177
subroutine ctrsm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
CTRSM
Definition ctrsm.f:180
Here is the call graph for this function:
Here is the caller graph for this function: