LAPACK  3.10.0
LAPACK: Linear Algebra PACKage
zdrot.f
Go to the documentation of this file.
1 *> \brief \b ZDROT
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE ZDROT( N, ZX, INCX, ZY, INCY, C, S )
12 *
13 * .. Scalar Arguments ..
14 * INTEGER INCX, INCY, N
15 * DOUBLE PRECISION C, S
16 * ..
17 * .. Array Arguments ..
18 * COMPLEX*16 ZX( * ), ZY( * )
19 * ..
20 *
21 *
22 *> \par Purpose:
23 * =============
24 *>
25 *> \verbatim
26 *>
27 *> Applies a plane rotation, where the cos and sin (c and s) are real
28 *> and the vectors cx and cy are complex.
29 *> jack dongarra, linpack, 3/11/78.
30 *> \endverbatim
31 *
32 * Arguments:
33 * ==========
34 *
35 *> \param[in] N
36 *> \verbatim
37 *> N is INTEGER
38 *> On entry, N specifies the order of the vectors cx and cy.
39 *> N must be at least zero.
40 *> \endverbatim
41 *>
42 *> \param[in,out] ZX
43 *> \verbatim
44 *> ZX is COMPLEX*16 array, dimension at least
45 *> ( 1 + ( N - 1 )*abs( INCX ) ).
46 *> Before entry, the incremented array ZX must contain the n
47 *> element vector cx. On exit, ZX is overwritten by the updated
48 *> vector cx.
49 *> \endverbatim
50 *>
51 *> \param[in] INCX
52 *> \verbatim
53 *> INCX is INTEGER
54 *> On entry, INCX specifies the increment for the elements of
55 *> ZX. INCX must not be zero.
56 *> \endverbatim
57 *>
58 *> \param[in,out] ZY
59 *> \verbatim
60 *> ZY is COMPLEX*16 array, dimension at least
61 *> ( 1 + ( N - 1 )*abs( INCY ) ).
62 *> Before entry, the incremented array ZY must contain the n
63 *> element vector cy. On exit, ZY is overwritten by the updated
64 *> vector cy.
65 *> \endverbatim
66 *>
67 *> \param[in] INCY
68 *> \verbatim
69 *> INCY is INTEGER
70 *> On entry, INCY specifies the increment for the elements of
71 *> ZY. INCY must not be zero.
72 *> \endverbatim
73 *>
74 *> \param[in] C
75 *> \verbatim
76 *> C is DOUBLE PRECISION
77 *> On entry, C specifies the cosine, cos.
78 *> \endverbatim
79 *>
80 *> \param[in] S
81 *> \verbatim
82 *> S is DOUBLE PRECISION
83 *> On entry, S specifies the sine, sin.
84 *> \endverbatim
85 *
86 * Authors:
87 * ========
88 *
89 *> \author Univ. of Tennessee
90 *> \author Univ. of California Berkeley
91 *> \author Univ. of Colorado Denver
92 *> \author NAG Ltd.
93 *
94 *> \ingroup complex16_blas_level1
95 *
96 * =====================================================================
97  SUBROUTINE zdrot( N, ZX, INCX, ZY, INCY, C, S )
98 *
99 * -- Reference BLAS level1 routine --
100 * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
101 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
102 *
103 * .. Scalar Arguments ..
104  INTEGER INCX, INCY, N
105  DOUBLE PRECISION C, S
106 * ..
107 * .. Array Arguments ..
108  COMPLEX*16 ZX( * ), ZY( * )
109 * ..
110 *
111 * =====================================================================
112 *
113 * .. Local Scalars ..
114  INTEGER I, IX, IY
115  COMPLEX*16 CTEMP
116 * ..
117 * .. Executable Statements ..
118 *
119  IF( n.LE.0 )
120  $ RETURN
121  IF( incx.EQ.1 .AND. incy.EQ.1 ) THEN
122 *
123 * code for both increments equal to 1
124 *
125  DO i = 1, n
126  ctemp = c*zx( i ) + s*zy( i )
127  zy( i ) = c*zy( i ) - s*zx( i )
128  zx( i ) = ctemp
129  END DO
130  ELSE
131 *
132 * code for unequal increments or equal increments not equal
133 * to 1
134 *
135  ix = 1
136  iy = 1
137  IF( incx.LT.0 )
138  $ ix = ( -n+1 )*incx + 1
139  IF( incy.LT.0 )
140  $ iy = ( -n+1 )*incy + 1
141  DO i = 1, n
142  ctemp = c*zx( ix ) + s*zy( iy )
143  zy( iy ) = c*zy( iy ) - s*zx( ix )
144  zx( ix ) = ctemp
145  ix = ix + incx
146  iy = iy + incy
147  END DO
148  END IF
149  RETURN
150 *
151 * End of ZDROT
152 *
153  END
subroutine zdrot(N, ZX, INCX, ZY, INCY, C, S)
ZDROT
Definition: zdrot.f:98