101      SUBROUTINE zlagsy( N, K, D, A, LDA, ISEED, WORK, INFO )
 
  108      INTEGER            INFO, K, LDA, N
 
  112      DOUBLE PRECISION   D( * )
 
  113      COMPLEX*16         A( LDA, * ), WORK( * )
 
  119      COMPLEX*16         ZERO, ONE, HALF
 
  120      parameter( zero = ( 0.0d+0, 0.0d+0 ),
 
  121     $                   one = ( 1.0d+0, 0.0d+0 ),
 
  122     $                   half = ( 0.5d+0, 0.0d+0 ) )
 
  127      COMPLEX*16         ALPHA, TAU, WA, WB
 
  134      DOUBLE PRECISION   DZNRM2
 
  136      EXTERNAL           dznrm2, zdotc
 
  139      INTRINSIC          abs, dble, max
 
  148      ELSE IF( k.LT.0 .OR. k.GT.n-1 ) 
THEN 
  150      ELSE IF( lda.LT.max( 1, n ) ) 
THEN 
  154         CALL xerbla( 
'ZLAGSY', -info )
 
  171      DO 60 i = n - 1, 1, -1
 
  175         CALL zlarnv( 3, iseed, n-i+1, work )
 
  176         wn = dznrm2( n-i+1, work, 1 )
 
  177         wa = ( wn / abs( work( 1 ) ) )*work( 1 )
 
  178         IF( wn.EQ.zero ) 
THEN 
  182            CALL zscal( n-i, one / wb, work( 2 ), 1 )
 
  184            tau = dble( wb / wa )
 
  192         CALL zlacgv( n-i+1, work, 1 )
 
  193         CALL zsymv( 
'Lower', n-i+1, tau, a( i, i ), lda, work, 1, zero,
 
  195         CALL zlacgv( n-i+1, work, 1 )
 
  199         alpha = -half*tau*zdotc( n-i+1, work, 1, work( n+1 ), 1 )
 
  200         CALL zaxpy( n-i+1, alpha, work, 1, work( n+1 ), 1 )
 
  209               a( ii, jj ) = a( ii, jj ) -
 
  210     $                       work( ii-i+1 )*work( n+jj-i+1 ) -
 
  211     $                       work( n+ii-i+1 )*work( jj-i+1 )
 
  218      DO 100 i = 1, n - 1 - k
 
  222         wn = dznrm2( n-k-i+1, a( k+i, i ), 1 )
 
  223         wa = ( wn / abs( a( k+i, i ) ) )*a( k+i, i )
 
  224         IF( wn.EQ.zero ) 
THEN 
  227            wb = a( k+i, i ) + wa
 
  228            CALL zscal( n-k-i, one / wb, a( k+i+1, i ), 1 )
 
  230            tau = dble( wb / wa )
 
  235         CALL zgemv( 
'Conjugate transpose', n-k-i+1, k-1, one,
 
  236     $               a( k+i, i+1 ), lda, a( k+i, i ), 1, zero, work, 1 )
 
  237         CALL zgerc( n-k-i+1, k-1, -tau, a( k+i, i ), 1, work, 1,
 
  238     $               a( k+i, i+1 ), lda )
 
  244         CALL zlacgv( n-k-i+1, a( k+i, i ), 1 )
 
  245         CALL zsymv( 
'Lower', n-k-i+1, tau, a( k+i, k+i ), lda,
 
  246     $               a( k+i, i ), 1, zero, work, 1 )
 
  247         CALL zlacgv( n-k-i+1, a( k+i, i ), 1 )
 
  251         alpha = -half*tau*zdotc( n-k-i+1, a( k+i, i ), 1, work, 1 )
 
  252         CALL zaxpy( n-k-i+1, alpha, a( k+i, i ), 1, work, 1 )
 
  261               a( ii, jj ) = a( ii, jj ) - a( ii, i )*work( jj-k-i+1 ) -
 
  262     $                       work( ii-k-i+1 )*a( jj, i )
 
  267         DO 90 j = k + i + 1, n
 
  276            a( j, i ) = a( i, j )
 
 
subroutine zsymv(uplo, n, alpha, a, lda, x, incx, beta, y, incy)
ZSYMV computes a matrix-vector product for a complex symmetric matrix.