500      SUBROUTINE zhesvxx( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF,
 
  502     $                    EQUED, S, B, LDB, X, LDX, RCOND, RPVGRW, BERR,
 
  503     $                    N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP,
 
  504     $                    NPARAMS, PARAMS, WORK, RWORK, INFO )
 
  511      CHARACTER          EQUED, FACT, UPLO
 
  512      INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
 
  514      DOUBLE PRECISION   RCOND, RPVGRW
 
  518      COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
 
  519     $                   WORK( * ), X( LDX, * )
 
  520      DOUBLE PRECISION   S( * ), PARAMS( * ), BERR( * ), RWORK( * ),
 
  521     $                   err_bnds_norm( nrhs, * ),
 
  522     $                   err_bnds_comp( nrhs, * )
 
  528      DOUBLE PRECISION   ZERO, ONE
 
  529      PARAMETER          ( ZERO = 0.0d+0, one = 1.0d+0 )
 
  530      INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
 
  531      INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
 
  532      INTEGER            CMP_ERR_I, PIV_GROWTH_I
 
  533      parameter( final_nrm_err_i = 1, final_cmp_err_i = 2,
 
  535      parameter( rcond_i = 4, nrm_rcond_i = 5, nrm_err_i = 6 )
 
  536      parameter( cmp_rcond_i = 7, cmp_err_i = 8,
 
  540      LOGICAL            EQUIL, NOFACT, RCEQU
 
  542      DOUBLE PRECISION   AMAX, BIGNUM, SMIN, SMAX, SCOND, SMLNUM
 
  547      DOUBLE PRECISION   DLAMCH, ZLA_HERPVGRW
 
  559      nofact = lsame( fact, 
'N' )
 
  560      equil = lsame( fact, 
'E' )
 
  561      smlnum = dlamch( 
'Safe minimum' )
 
  562      bignum = one / smlnum
 
  563      IF( nofact .OR. equil ) 
THEN 
  567         rcequ = lsame( equed, 
'Y' )
 
  578      IF( .NOT.nofact .AND. .NOT.equil .AND. .NOT.
 
  579     $     lsame( fact, 
'F' ) ) 
THEN 
  581      ELSE IF( .NOT.lsame( uplo, 
'U' ) .AND.
 
  582     $         .NOT.lsame( uplo, 
'L' ) ) 
THEN 
  584      ELSE IF( n.LT.0 ) 
THEN 
  586      ELSE IF( nrhs.LT.0 ) 
THEN 
  588      ELSE IF( lda.LT.max( 1, n ) ) 
THEN 
  590      ELSE IF( ldaf.LT.max( 1, n ) ) 
THEN 
  592      ELSE IF( lsame( fact, 
'F' ) .AND. .NOT.
 
  593     $        ( rcequ .OR. lsame( equed, 
'N' ) ) ) 
THEN 
  600               smin = min( smin, s( j ) )
 
  601               smax = max( smax, s( j ) )
 
  603            IF( smin.LE.zero ) 
THEN 
  605            ELSE IF( n.GT.0 ) 
THEN 
  606               scond = max( smin, smlnum ) / min( smax, bignum )
 
  612            IF( ldb.LT.max( 1, n ) ) 
THEN 
  614            ELSE IF( ldx.LT.max( 1, n ) ) 
THEN 
  621         CALL xerbla( 
'ZHESVXX', -info )
 
  629         CALL zheequb( uplo, n, a, lda, s, scond, amax, work,
 
  631         IF( infequ.EQ.0 ) 
THEN 
  635            CALL zlaqhe( uplo, n, a, lda, s, scond, amax, equed )
 
  636            rcequ = lsame( equed, 
'Y' )
 
  642      IF( rcequ ) 
CALL zlascl2( n, nrhs, s, b, ldb )
 
  644      IF( nofact .OR. equil ) 
THEN 
  648         CALL zlacpy( uplo, n, n, a, lda, af, ldaf )
 
  649         CALL zhetrf( uplo, n, af, ldaf, ipiv, work, 5*max(1,n),
 
  661     $           rpvgrw = zla_herpvgrw( uplo, n, info, a, lda, af,
 
  671     $     rpvgrw = zla_herpvgrw( uplo, n, info, a, lda, af, ldaf,
 
  677      CALL zlacpy( 
'Full', n, nrhs, b, ldb, x, ldx )
 
  678      CALL zhetrs( uplo, n, nrhs, af, ldaf, ipiv, x, ldx, info )
 
  683      CALL zherfsx( uplo, equed, n, nrhs, a, lda, af, ldaf, ipiv,
 
  684     $     s, b, ldb, x, ldx, rcond, berr, n_err_bnds, err_bnds_norm,
 
  685     $     err_bnds_comp, nparams, params, work, rwork, info )
 
  690         CALL zlascl2 ( n, nrhs, s, x, ldx )
 
 
subroutine zherfsx(uplo, equed, n, nrhs, a, lda, af, ldaf, ipiv, s, b, ldb, x, ldx, rcond, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info)
ZHERFSX
subroutine zhesvxx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, equed, s, b, ldb, x, ldx, rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info)
ZHESVXX computes the solution to system of linear equations A * X = B for HE matrices