503      SUBROUTINE csysvxx( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF,
 
  505     $                    EQUED, S, B, LDB, X, LDX, RCOND, RPVGRW, BERR,
 
  506     $                    N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP,
 
  507     $                    NPARAMS, PARAMS, WORK, RWORK, INFO )
 
  514      CHARACTER          EQUED, FACT, UPLO
 
  515      INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
 
  521      COMPLEX            A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
 
  522     $                   X( LDX, * ), WORK( * )
 
  523      REAL               S( * ), PARAMS( * ), BERR( * ),
 
  524     $                   err_bnds_norm( nrhs, * ),
 
  525     $                   err_bnds_comp( nrhs, * ), rwork( * )
 
  532      PARAMETER          ( ZERO = 0.0e+0, one = 1.0e+0 )
 
  533      INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
 
  534      INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
 
  535      INTEGER            CMP_ERR_I, PIV_GROWTH_I
 
  536      parameter( final_nrm_err_i = 1, final_cmp_err_i = 2,
 
  538      parameter( rcond_i = 4, nrm_rcond_i = 5, nrm_err_i = 6 )
 
  539      parameter( cmp_rcond_i = 7, cmp_err_i = 8,
 
  543      LOGICAL            EQUIL, NOFACT, RCEQU
 
  545      REAL               AMAX, BIGNUM, SMIN, SMAX, SCOND, SMLNUM
 
  550      REAL               SLAMCH, CLA_SYRPVGRW
 
  562      nofact = lsame( fact, 
'N' )
 
  563      equil = lsame( fact, 
'E' )
 
  564      smlnum = slamch( 
'Safe minimum' )
 
  565      bignum = one / smlnum
 
  566      IF( nofact .OR. equil ) 
THEN 
  570         rcequ = lsame( equed, 
'Y' )
 
  581      IF( .NOT.nofact .AND. .NOT.equil .AND. .NOT.
 
  582     $     lsame( fact, 
'F' ) ) 
THEN 
  584      ELSE IF( .NOT.lsame(uplo, 
'U') .AND.
 
  585     $         .NOT.lsame(uplo, 
'L') ) 
THEN 
  587      ELSE IF( n.LT.0 ) 
THEN 
  589      ELSE IF( nrhs.LT.0 ) 
THEN 
  591      ELSE IF( lda.LT.max( 1, n ) ) 
THEN 
  593      ELSE IF( ldaf.LT.max( 1, n ) ) 
THEN 
  595      ELSE IF( lsame( fact, 
'F' ) .AND. .NOT.
 
  596     $        ( rcequ .OR. lsame( equed, 
'N' ) ) ) 
THEN 
  603               smin = min( smin, s( j ) )
 
  604               smax = max( smax, s( j ) )
 
  606            IF( smin.LE.zero ) 
THEN 
  608            ELSE IF( n.GT.0 ) 
THEN 
  609               scond = max( smin, smlnum ) / min( smax, bignum )
 
  615            IF( ldb.LT.max( 1, n ) ) 
THEN 
  617            ELSE IF( ldx.LT.max( 1, n ) ) 
THEN 
  624         CALL xerbla( 
'CSYSVXX', -info )
 
  632         CALL csyequb( uplo, n, a, lda, s, scond, amax, work,
 
  634         IF( infequ.EQ.0 ) 
THEN 
  638            CALL claqsy( uplo, n, a, lda, s, scond, amax, equed )
 
  639            rcequ = lsame( equed, 
'Y' )
 
  646      IF( rcequ ) 
CALL clascl2( n, nrhs, s, b, ldb )
 
  648      IF( nofact .OR. equil ) 
THEN 
  652         CALL clacpy( uplo, n, n, a, lda, af, ldaf )
 
  653         CALL csytrf( uplo, n, af, ldaf, ipiv, work, 5*max(1,n),
 
  665     $           rpvgrw = cla_syrpvgrw( uplo, n, info, a, lda, af,
 
  666     $           ldaf, ipiv, rwork )
 
  674     $     rpvgrw = cla_syrpvgrw( uplo, n, info, a, lda, af, ldaf,
 
  679      CALL clacpy( 
'Full', n, nrhs, b, ldb, x, ldx )
 
  680      CALL csytrs( uplo, n, nrhs, af, ldaf, ipiv, x, ldx, info )
 
  685      CALL csyrfsx( uplo, equed, n, nrhs, a, lda, af, ldaf, ipiv,
 
  686     $     s, b, ldb, x, ldx, rcond, berr, n_err_bnds, err_bnds_norm,
 
  687     $     err_bnds_comp, nparams, params, work, rwork, info )
 
  692         CALL clascl2 (n, nrhs, s, x, ldx )
 
 
subroutine csyrfsx(uplo, equed, n, nrhs, a, lda, af, ldaf, ipiv, s, b, ldb, x, ldx, rcond, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info)
CSYRFSX
subroutine csysvxx(fact, uplo, n, nrhs, a, lda, af, ldaf, ipiv, equed, s, b, ldb, x, ldx, rcond, rpvgrw, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, rwork, info)
CSYSVXX computes the solution to system of linear equations A * X = B for SY matrices