LAPACK  3.10.0
LAPACK: Linear Algebra PACKage
cgetrf2.f
Go to the documentation of this file.
1 *> \brief \b CGETRF2
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * RECURSIVE SUBROUTINE CGETRF2( M, N, A, LDA, IPIV, INFO )
12 *
13 * .. Scalar Arguments ..
14 * INTEGER INFO, LDA, M, N
15 * ..
16 * .. Array Arguments ..
17 * INTEGER IPIV( * )
18 * COMPLEX A( LDA, * )
19 * ..
20 *
21 *
22 *> \par Purpose:
23 * =============
24 *>
25 *> \verbatim
26 *>
27 *> CGETRF2 computes an LU factorization of a general M-by-N matrix A
28 *> using partial pivoting with row interchanges.
29 *>
30 *> The factorization has the form
31 *> A = P * L * U
32 *> where P is a permutation matrix, L is lower triangular with unit
33 *> diagonal elements (lower trapezoidal if m > n), and U is upper
34 *> triangular (upper trapezoidal if m < n).
35 *>
36 *> This is the recursive version of the algorithm. It divides
37 *> the matrix into four submatrices:
38 *>
39 *> [ A11 | A12 ] where A11 is n1 by n1 and A22 is n2 by n2
40 *> A = [ -----|----- ] with n1 = min(m,n)/2
41 *> [ A21 | A22 ] n2 = n-n1
42 *>
43 *> [ A11 ]
44 *> The subroutine calls itself to factor [ --- ],
45 *> [ A12 ]
46 *> [ A12 ]
47 *> do the swaps on [ --- ], solve A12, update A22,
48 *> [ A22 ]
49 *>
50 *> then calls itself to factor A22 and do the swaps on A21.
51 *>
52 *> \endverbatim
53 *
54 * Arguments:
55 * ==========
56 *
57 *> \param[in] M
58 *> \verbatim
59 *> M is INTEGER
60 *> The number of rows of the matrix A. M >= 0.
61 *> \endverbatim
62 *>
63 *> \param[in] N
64 *> \verbatim
65 *> N is INTEGER
66 *> The number of columns of the matrix A. N >= 0.
67 *> \endverbatim
68 *>
69 *> \param[in,out] A
70 *> \verbatim
71 *> A is COMPLEX array, dimension (LDA,N)
72 *> On entry, the M-by-N matrix to be factored.
73 *> On exit, the factors L and U from the factorization
74 *> A = P*L*U; the unit diagonal elements of L are not stored.
75 *> \endverbatim
76 *>
77 *> \param[in] LDA
78 *> \verbatim
79 *> LDA is INTEGER
80 *> The leading dimension of the array A. LDA >= max(1,M).
81 *> \endverbatim
82 *>
83 *> \param[out] IPIV
84 *> \verbatim
85 *> IPIV is INTEGER array, dimension (min(M,N))
86 *> The pivot indices; for 1 <= i <= min(M,N), row i of the
87 *> matrix was interchanged with row IPIV(i).
88 *> \endverbatim
89 *>
90 *> \param[out] INFO
91 *> \verbatim
92 *> INFO is INTEGER
93 *> = 0: successful exit
94 *> < 0: if INFO = -i, the i-th argument had an illegal value
95 *> > 0: if INFO = i, U(i,i) is exactly zero. The factorization
96 *> has been completed, but the factor U is exactly
97 *> singular, and division by zero will occur if it is used
98 *> to solve a system of equations.
99 *> \endverbatim
100 *
101 * Authors:
102 * ========
103 *
104 *> \author Univ. of Tennessee
105 *> \author Univ. of California Berkeley
106 *> \author Univ. of Colorado Denver
107 *> \author NAG Ltd.
108 *
109 *> \ingroup complexGEcomputational
110 *
111 * =====================================================================
112  RECURSIVE SUBROUTINE cgetrf2( M, N, A, LDA, IPIV, INFO )
113 *
114 * -- LAPACK computational routine --
115 * -- LAPACK is a software package provided by Univ. of Tennessee, --
116 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
117 *
118 * .. Scalar Arguments ..
119  INTEGER info, lda, m, n
120 * ..
121 * .. Array Arguments ..
122  INTEGER ipiv( * )
123  COMPLEX a( lda, * )
124 * ..
125 *
126 * =====================================================================
127 *
128 * .. Parameters ..
129  COMPLEX one, zero
130  parameter( one = ( 1.0e+0, 0.0e+0 ),
131  $ zero = ( 0.0e+0, 0.0e+0 ) )
132 * ..
133 * .. Local Scalars ..
134  REAL sfmin
135  COMPLEX temp
136  INTEGER i, iinfo, n1, n2
137 * ..
138 * .. External Functions ..
139  REAL slamch
140  INTEGER icamax
141  EXTERNAL slamch, icamax
142 * ..
143 * .. External Subroutines ..
144  EXTERNAL cgemm, cscal, claswp, ctrsm, xerbla
145 * ..
146 * .. Intrinsic Functions ..
147  INTRINSIC max, min
148 * ..
149 * .. Executable Statements ..
150 *
151 * Test the input parameters
152 *
153  info = 0
154  IF( m.LT.0 ) THEN
155  info = -1
156  ELSE IF( n.LT.0 ) THEN
157  info = -2
158  ELSE IF( lda.LT.max( 1, m ) ) THEN
159  info = -4
160  END IF
161  IF( info.NE.0 ) THEN
162  CALL xerbla( 'CGETRF2', -info )
163  RETURN
164  END IF
165 *
166 * Quick return if possible
167 *
168  IF( m.EQ.0 .OR. n.EQ.0 )
169  $ RETURN
170 
171  IF ( m.EQ.1 ) THEN
172 *
173 * Use unblocked code for one row case
174 * Just need to handle IPIV and INFO
175 *
176  ipiv( 1 ) = 1
177  IF ( a(1,1).EQ.zero )
178  $ info = 1
179 *
180  ELSE IF( n.EQ.1 ) THEN
181 *
182 * Use unblocked code for one column case
183 *
184 *
185 * Compute machine safe minimum
186 *
187  sfmin = slamch('S')
188 *
189 * Find pivot and test for singularity
190 *
191  i = icamax( m, a( 1, 1 ), 1 )
192  ipiv( 1 ) = i
193  IF( a( i, 1 ).NE.zero ) THEN
194 *
195 * Apply the interchange
196 *
197  IF( i.NE.1 ) THEN
198  temp = a( 1, 1 )
199  a( 1, 1 ) = a( i, 1 )
200  a( i, 1 ) = temp
201  END IF
202 *
203 * Compute elements 2:M of the column
204 *
205  IF( abs(a( 1, 1 )) .GE. sfmin ) THEN
206  CALL cscal( m-1, one / a( 1, 1 ), a( 2, 1 ), 1 )
207  ELSE
208  DO 10 i = 1, m-1
209  a( 1+i, 1 ) = a( 1+i, 1 ) / a( 1, 1 )
210  10 CONTINUE
211  END IF
212 *
213  ELSE
214  info = 1
215  END IF
216 *
217  ELSE
218 *
219 * Use recursive code
220 *
221  n1 = min( m, n ) / 2
222  n2 = n-n1
223 *
224 * [ A11 ]
225 * Factor [ --- ]
226 * [ A21 ]
227 *
228  CALL cgetrf2( m, n1, a, lda, ipiv, iinfo )
229 
230  IF ( info.EQ.0 .AND. iinfo.GT.0 )
231  $ info = iinfo
232 *
233 * [ A12 ]
234 * Apply interchanges to [ --- ]
235 * [ A22 ]
236 *
237  CALL claswp( n2, a( 1, n1+1 ), lda, 1, n1, ipiv, 1 )
238 *
239 * Solve A12
240 *
241  CALL ctrsm( 'L', 'L', 'N', 'U', n1, n2, one, a, lda,
242  $ a( 1, n1+1 ), lda )
243 *
244 * Update A22
245 *
246  CALL cgemm( 'N', 'N', m-n1, n2, n1, -one, a( n1+1, 1 ), lda,
247  $ a( 1, n1+1 ), lda, one, a( n1+1, n1+1 ), lda )
248 *
249 * Factor A22
250 *
251  CALL cgetrf2( m-n1, n2, a( n1+1, n1+1 ), lda, ipiv( n1+1 ),
252  $ iinfo )
253 *
254 * Adjust INFO and the pivot indices
255 *
256  IF ( info.EQ.0 .AND. iinfo.GT.0 )
257  $ info = iinfo + n1
258  DO 20 i = n1+1, min( m, n )
259  ipiv( i ) = ipiv( i ) + n1
260  20 CONTINUE
261 *
262 * Apply interchanges to A21
263 *
264  CALL claswp( n1, a( 1, 1 ), lda, n1+1, min( m, n), ipiv, 1 )
265 *
266  END IF
267  RETURN
268 *
269 * End of CGETRF2
270 *
271  END
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
integer function icamax(N, CX, INCX)
ICAMAX
Definition: icamax.f:71
subroutine cscal(N, CA, CX, INCX)
CSCAL
Definition: cscal.f:78
subroutine cgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
CGEMM
Definition: cgemm.f:187
subroutine ctrsm(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB)
CTRSM
Definition: ctrsm.f:180
recursive subroutine cgetrf2(M, N, A, LDA, IPIV, INFO)
CGETRF2
Definition: cgetrf2.f:113
subroutine claswp(N, A, LDA, K1, K2, IPIV, INCX)
CLASWP performs a series of row interchanges on a general rectangular matrix.
Definition: claswp.f:115
real function slamch(CMACH)
SLAMCH
Definition: slamch.f:68